1ull
RNA APTAMER COMPLEXED WITH HIV-1 REV PEPTIDE, NMR, 7 STRUCTURESRNA APTAMER COMPLEXED WITH HIV-1 REV PEPTIDE, NMR, 7 STRUCTURES
Structural highlights
FunctionREV_HV1W2 Escorts unspliced or incompletely spliced viral pre-mRNAs (late transcripts) out of the nucleus of infected cells. These pre-mRNAs carry a recognition sequence called Rev responsive element (RRE) located in the env gene, that is not present in fully spliced viral mRNAs (early transcripts). This function is essential since most viral proteins are translated from unspliced or partially spliced pre-mRNAs which cannot exit the nucleus by the pathway used by fully processed cellular mRNAs. Rev itself is translated from a fully spliced mRNA that readily exits the nucleus. Rev's nuclear localization signal (NLS) binds directly to KPNB1/Importin beta-1 without previous binding to KPNA1/Importin alpha-1. KPNB1 binds to the GDP bound form of RAN (Ran-GDP) and targets Rev to the nucleus. In the nucleus, the conversion from Ran-GDP to Ran-GTP dissociates Rev from KPNB1 and allows Rev's binding to the RRE in viral pre-mRNAs. Rev multimerization on the RRE via cooperative assembly exposes its nuclear export signal (NES) to the surface. Rev can then form a complex with XPO1/CRM1 and Ran-GTP, leading to nuclear export of the complex. Conversion from Ran-GTP to Ran-GDP mediates dissociation of the Rev/RRE/XPO1/RAN complex, so that Rev can return to the nucleus for a subsequent round of export. Beside KPNB1, also seems to interact with TNPO1/Transportin-1, RANBP5/IPO5 and IPO7/RANBP7 for nuclear import. The nucleoporin-like HRB/RIP is an essential cofactor that probably indirectly interacts with Rev to release HIV RNAs from the perinuclear region to the cytoplasm (By similarity). Publication Abstract from PubMedA combined NMR-molecular dynamics approach has been applied to determine the solution structure of a HIV-1 17-mer rev peptide bound to its 35-mer high affinity RNA aptamer binding site. Complex formation involves adaptive binding with the alpha-helical arginine-rich basic rev peptide targeting a widened RNA major groove centred about adjacent G.A and reversed A.A mismatches. We have also identified a U AU triple in the aptamer complex with the Hoogsteen-paired uracil base sandwiched between two arginine side chains. The intermolecular contacts identified in the aptamer complex readily account for the consequences of peptide and RNA mutations, as well as the results of previous in vitro selection experiments. The details of molecular recognition associated with targeting by rev of its high affinity RNA binding sites open new opportunities for structure-based drug design strategies. Deep penetration of an alpha-helix into a widened RNA major groove in the HIV-1 rev peptide-RNA aptamer complex.,Ye X, Gorin A, Ellington AD, Patel DJ Nat Struct Biol. 1996 Dec;3(12):1026-33. PMID:8946856[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References |
|