1udx

From Proteopedia
Jump to navigation Jump to search

Crystal structure of the conserved protein TT1381 from Thermus thermophilus HB8Crystal structure of the conserved protein TT1381 from Thermus thermophilus HB8

Structural highlights

1udx is a 1 chain structure with sequence from Thermus thermophilus HB8. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.07Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT, TOPSAN

Function

OBG_THET8 An essential GTPase which binds GTP, GDP and possibly (p)ppGpp with moderate affinity, with high nucleotide exchange rates and a fairly low GTP hydrolysis rate (By similarity). It may play a role in control of the cell cycle, stress response, ribosome biogenesis and in those bacteria that undergo differentiation, in morphogenesis control (Potential).[HAMAP-Rule:MF_01454]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Obg comprises a unique family of high-molecular mass GTPases conserved from bacteria to eukaryotes. Bacterial Obg is essential for cellular growth, sporulation, and differentiation. Here, we report the crystal structure of the full-length form of Obg from Thermus thermophilus HB8 at 2.07 A resolution, in the nucleotide-free state. It reveals a three-domain arrangement, composed of the N-terminal domain, the guanine nucleotide-binding domain (G domain), and the C-terminal domain. The N-terminal and G domains have the Obg fold and the Ras-like fold, respectively. These global folds are similar to those of the recently published structure of the C-terminal domain-truncated form of Obg from Bacillus subtilis. On the other hand, the C-terminal domain of Obg was found to have a novel fold (the OCT fold). A comparison of the T.thermophilus and B.subtilis nucleotide-free Obg structures revealed significant conformational changes in the switch-I and switch-II regions of the G domain. Notably, the N-terminal domain is rotated drastically, by almost 180 degrees, around the G domain axis. In the T.thermophilus Obg crystal, the nucleotide-binding site of the G domain interacts with the C-terminal domain of the adjacent molecule. These data suggest a possible domain rearrangement of Obg, and a potential role of the C-terminal domain in the regulation of the nucleotide-binding state.

Crystal structure of the GTP-binding protein Obg from Thermus thermophilus HB8.,Kukimoto-Niino M, Murayama K, Inoue M, Terada T, Tame JR, Kuramitsu S, Shirouzu M, Yokoyama S J Mol Biol. 2004 Mar 26;337(3):761-70. PMID:15019792[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kukimoto-Niino M, Murayama K, Inoue M, Terada T, Tame JR, Kuramitsu S, Shirouzu M, Yokoyama S. Crystal structure of the GTP-binding protein Obg from Thermus thermophilus HB8. J Mol Biol. 2004 Mar 26;337(3):761-70. PMID:15019792 doi:10.1016/j.jmb.2004.01.047

1udx, resolution 2.07Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA