1shr
Crystal structure of ferrocyanide bound human hemoglobin A2 at 1.88A resolutionCrystal structure of ferrocyanide bound human hemoglobin A2 at 1.88A resolution
Structural highlights
DiseaseHBA_HUMAN Defects in HBA1 may be a cause of Heinz body anemias (HEIBAN) [MIM:140700. This is a form of non-spherocytic hemolytic anemia of Dacie type 1. After splenectomy, which has little benefit, basophilic inclusions called Heinz bodies are demonstrable in the erythrocytes. Before splenectomy, diffuse or punctate basophilia may be evident. Most of these cases are probably instances of hemoglobinopathy. The hemoglobin demonstrates heat lability. Heinz bodies are observed also with the Ivemark syndrome (asplenia with cardiovascular anomalies) and with glutathione peroxidase deficiency.[1] Defects in HBA1 are the cause of alpha-thalassemia (A-THAL) [MIM:604131. The thalassemias are the most common monogenic diseases and occur mostly in Mediterranean and Southeast Asian populations. The hallmark of alpha-thalassemia is an imbalance in globin-chain production in the adult HbA molecule. The level of alpha chain production can range from none to very nearly normal levels. Deletion of both copies of each of the two alpha-globin genes causes alpha(0)-thalassemia, also known as homozygous alpha thalassemia. Due to the complete absence of alpha chains, the predominant fetal hemoglobin is a tetramer of gamma-chains (Bart hemoglobin) that has essentially no oxygen carrying capacity. This causes oxygen starvation in the fetal tissues leading to prenatal lethality or early neonatal death. The loss of three alpha genes results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia known as hemoglobin H disease. Untreated, most patients die in childhood or early adolescence. The loss of two alpha genes results in mild alpha-thalassemia, also known as heterozygous alpha-thalassemia. Affected individuals have small red cells and a mild anemia (microcytosis). If three of the four alpha-globin genes are functional, individuals are completely asymptomatic. Some rare forms of alpha-thalassemia are due to point mutations (non-deletional alpha-thalassemia). The thalassemic phenotype is due to unstable globin alpha chains that are rapidly catabolized prior to formation of the alpha-beta heterotetramers. Note=Alpha(0)-thalassemia is associated with non-immune hydrops fetalis, a generalized edema of the fetus with fluid accumulation in the body cavities due to non-immune causes. Non-immune hydrops fetalis is not a diagnosis in itself but a symptom, a feature of many genetic disorders, and the end-stage of a wide variety of disorders. Defects in HBA1 are the cause of hemoglobin H disease (HBH) [MIM:613978. HBH is a form of alpha-thalassemia due to the loss of three alpha genes. This results in high levels of a tetramer of four beta chains (hemoglobin H), causing a severe and life-threatening anemia. Untreated, most patients die in childhood or early adolescence.[2] FunctionHBA_HUMAN Involved in oxygen transport from the lung to the various peripheral tissues. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedHemoglobin A(2) (alpha(2)delta(2)) is an important hemoglobin variant which is a minor component (2-3%) in the circulating red blood cells, and its elevated concentration in beta-thalassemia is a useful clinical diagnostic. In beta-thalassemia major, where there is beta-chain production failure, HbA(2) acts as the predominant oxygen deliverer. HbA(2) has two more important features. (1) It is more resistant to thermal denaturation than HbA, and (2) it inhibits the polymerization of deoxy sickle hemoglobin (HbS). Hemoglobin E (E26K(beta)), formed as a result of the splice site mutation on exon 1 of the beta-globin gene, is another important hemoglobin variant which is known to be unstable at high temperatures. Both heterozygous HbE (HbAE) and homozygous HbE (HbEE) are benign disorders, but when HbE combines with beta-thalassemia, it causes E/beta-thalassemia which has severe clinical consequences. In this paper, we present the crystal structures of HbA(2) and HbE at 2.20 and 1.74 A resolution, respectively, in their R2 states, which have been used here to provide the probable explanations of the thermal stability and instability of HbA(2) and HbE. Using the coordinates of R2 state HbA(2), we modeled the structure of T state HbA(2) which allowed us to address the structural basis of the antisickling property of HbA(2). Using the coordinates of the delta-chain of HbA(2) (R2 state), we also modeled the structure of hemoglobin homotetramer delta(4) that occurs in the case of rare HbH disease. From the differences in intersubunit contacts among beta(4), gamma(4), and delta(4), we formed a hypothesis regarding the possible tetramerization pathway of delta(4). The crystal structure of a ferrocyanide-bound HbA(2) at 1.88 A resolution is also presented here, which throws light on the location and the mode of binding of ferrocyanide anion with hemoglobin, predominantly using the residues involved in DPG binding. The pH dependence of ferrocyanide binding with hemoglobin has also been investigated. Crystal structures of HbA2 and HbE and modeling of hemoglobin delta 4: interpretation of the thermal stability and the antisickling effect of HbA2 and identification of the ferrocyanide binding site in Hb.,Sen U, Dasgupta J, Choudhury D, Datta P, Chakrabarti A, Chakrabarty SB, Chakrabarty A, Dattagupta JK Biochemistry. 2004 Oct 5;43(39):12477-88. PMID:15449937[3] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|