1qxh

From Proteopedia
Jump to navigation Jump to search

Crystal Structure of Escherichia coli Thiol Peroxidase in the Oxidized StateCrystal Structure of Escherichia coli Thiol Peroxidase in the Oxidized State

Structural highlights

1qxh is a 2 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TPX_ECOLI Has antioxidant activity. Could remove peroxides or H(2)O(2) within the catalase- and peroxidase-deficient periplasmic space.[HAMAP-Rule:MF_00269]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Thioredoxin-dependent thiol peroxidase (Tpx) from Escherichia coli represents a group of antioxidant enzymes that are widely distributed in pathogenic bacterial species and which belong to the peroxiredoxin (Prx) family. Bacterial Tpxs are unique in that the location of the resolving cysteine (CR) is different from those of other Prxs. E. coli Tpx (EcTpx) shows substrate specificity toward alkyl hydroperoxides over H2O2 and is the most potent reductant of alkyl hydroperoxides surpassing AhpC and BCP, the other E. coli Prx members. Here, we present the crystal structure of EcTpx in the oxidized state determined at 2.2-A resolution. The structure revealed that Tpxs are the second type of atypical 2-Cys Prxs with an intramolecular disulfide bond formed between the peroxidatic (CP, Cys61) and resolving (Cys95) cysteine residues. The extraordinarily long N-terminal chain of EcTpx folds into a beta-hairpin making the overall structure very compact. Modeling suggests that, in atypical 2-Cys Prxs, the CR-loop as well as the CP-loop may alternately assume the fully folded or locally unfolded conformation depending on redox states, as does the CP-loop in typical 2-Cys Prxs. EcTpx exists as a dimer stabilized by hydrogen bonds. Its substrate binding site extends to the dimer interface. A modeled structure of the reduced EcTpx in complex with 15-hydroperoxyeicosatetraenoic acid suggests that the size and shape of the binding site are particularly suited for long fatty acid hydroperoxides consistent with its greater reactivity.

Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins.,Choi J, Choi S, Choi J, Cha MK, Kim IH, Shin W J Biol Chem. 2003 Dec 5;278(49):49478-86. Epub 2003 Sep 23. PMID:14506251[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Choi J, Choi S, Choi J, Cha MK, Kim IH, Shin W. Crystal structure of Escherichia coli thiol peroxidase in the oxidized state: insights into intramolecular disulfide formation and substrate binding in atypical 2-Cys peroxiredoxins. J Biol Chem. 2003 Dec 5;278(49):49478-86. Epub 2003 Sep 23. PMID:14506251 doi:10.1074/jbc.M309015200

1qxh, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA