1qqv

From Proteopedia
Jump to navigation Jump to search

SOLUTION STRUCTURE OF THE HEADPIECE DOMAIN OF CHICKEN VILLINSOLUTION STRUCTURE OF THE HEADPIECE DOMAIN OF CHICKEN VILLIN

Structural highlights

1qqv is a 1 chain structure with sequence from Gallus gallus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

VILI_CHICK Epithelial cell-specific Ca(2+)-regulated actin-modifying protein that modulates the reorganization of microvillar actin filaments. Plays a role in the actin nucleation, actin filament bundle assembly, actin filament capping and severing. Binds phosphatidylinositol 4,5-bisphosphate (PIP2) and lysophosphatidic acid (LPA); binds LPA with higher affinity than PIP2. Binding to LPA increases its phosphorylation by SRC and inhibits all actin-modifying activities. Binding to PIP2 inhibits actin-capping and -severing activities but enhances actin-bundling activity. Regulates the intestinal epithelial cell morphology, cell invasion, cell migration and apoptosis. Protects against apoptosis induced by dextran sodium sulfate (DSS) in the gastrointestinal epithelium. Appears to regulate cell death by maintaining mitochondrial integrity. Enhances hepatocyte growth factor (HGF)-induced epithelial cell motility, chemotaxis and wound repair (By similarity). Its actin-bundling activity is inhibited by tropomyosin.[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

A growing family of F-actin-bundling proteins harbors a modular F-actin-binding headpiece domain at the C terminus. Headpiece provides one of the two F-actin-binding sites essential for filament bundling. Here, we report the first structure of a functional headpiece domain. The NMR structure of chicken villin headpiece (HP67) reveals two subdomains that share a tightly packed hydrophobic core. The N-terminal subdomain contains bends, turns, and a four-residue alpha-helix as well as a buried histidine residue that imparts a pH-dependent folding. The C-terminal subdomain is composed of three alpha-helices and its folding is pH-independent. Two residues previously implicated in F-actin-binding form a buried salt-bridge between the N and C-terminal subdomains. The rest of the identified actin-binding residues are solvent-exposed and map onto a unique F-actin-binding surface.

NMR structure of an F-actin-binding "headpiece" motif from villin.,Vardar D, Buckley DA, Frank BS, McKnight CJ J Mol Biol. 1999 Dec 17;294(5):1299-310. PMID:10600386[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Burgess DR, Broschat KO, Hayden JM. Tropomyosin distinguishes between the two actin-binding sites of villin and affects actin-binding properties of other brush border proteins. J Cell Biol. 1987 Jan;104(1):29-40. PMID:3793760
  2. de Arruda MV, Bazari H, Wallek M, Matsudaira P. An actin footprint on villin. Single site substitutions in a cluster of basic residues inhibit the actin severing but not capping activity of villin. J Biol Chem. 1992 Jun 25;267(18):13079-85. PMID:1618806
  3. Vardar D, Buckley DA, Frank BS, McKnight CJ. NMR structure of an F-actin-binding "headpiece" motif from villin. J Mol Biol. 1999 Dec 17;294(5):1299-310. PMID:10600386 doi:10.1006/jmbi.1999.3321
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA