1qpc

From Proteopedia
Jump to navigation Jump to search

STRUCTURAL ANALYSIS OF THE LYMPHOCYTE-SPECIFIC KINASE LCK IN COMPLEX WITH NON-SELECTIVE AND SRC FAMILY SELECTIVE KINASE INHIBITORSSTRUCTURAL ANALYSIS OF THE LYMPHOCYTE-SPECIFIC KINASE LCK IN COMPLEX WITH NON-SELECTIVE AND SRC FAMILY SELECTIVE KINASE INHIBITORS

Structural highlights

1qpc is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.6Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

LCK_HUMAN Severe combined immunodeficiency due to LCK deficiency. Note=A chromosomal aberration involving LCK is found in leukemias. Translocation t(1;7)(p34;q34) with TCRB.

Function

LCK_HUMAN Non-receptor tyrosine-protein kinase that plays an essential role in the selection and maturation of developing T-cells in the thymus and in the function of mature T-cells. Plays a key role in T-cell antigen receptor (TCR)-linked signal transduction pathways. Constitutively associated with the cytoplasmic portions of the CD4 and CD8 surface receptors. Association of the TCR with a peptide antigen-bound MHC complex facilitates the interaction of CD4 and CD8 with MHC class II and class I molecules, respectively, thereby recruiting the associated LCK protein to the vicinity of the TCR/CD3 complex. LCK then phosphorylates tyrosines residues within the immunoreceptor tyrosine-based activation motifs (ITAM) of the cytoplasmic tails of the TCR-gamma chains and CD3 subunits, initiating the TCR/CD3 signaling pathway. Once stimulated, the TCR recruits the tyrosine kinase ZAP70, that becomes phosphorylated and activated by LCK. Following this, a large number of signaling molecules are recruited, ultimately leading to lymphokine production. LCK also contributes to signaling by other receptor molecules. Associates directly with the cytoplasmic tail of CD2, which leads to hyperphosphorylation and activation of LCK. Also plays a role in the IL2 receptor-linked signaling pathway that controls the T-cell proliferative response. Binding of IL2 to its receptor results in increased activity of LCK. Is expressed at all stages of thymocyte development and is required for the regulation of maturation events that are governed by both pre-TCR and mature alpha beta TCR. Phosphorylates other substrates including RUNX3, PTK2B/PYK2, the microtubule-associated protein MAPT, RHOH or TYROBP.[1] [2] [3] [4] [5] [6]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: The lymphocyte-specific kinase Lck is a member of the Src family of non-receptor tyrosine kinases. Lck catalyzes the initial phosphorylation of T-cell receptor components that is necessary for signal transduction and T-cell activation. On the basis of both biochemical and genetic studies, Lck is considered an attractive cell-specific target for the design of novel T-cell immunosuppressants. To date, the lack of detailed structural information on the mode of inhibitor binding to Lck has limited the discovery of novel Lck inhibitors. RESULTS: We report here the high-resolution crystal structures of an activated Lck kinase domain in complex with three structurally distinct ATP-competitive inhibitors: AMP-PNP (a non-selective, non-hydrolyzable ATP analog); staurosporine (a potent but non-selective protein kinase inhibitor); and PP2 (a potent Src family selective protein tyrosine kinase inhibitor). Comparison of these structures reveals subtle but important structural changes at the ATP-binding site. Furthermore, PP2 is found to access a deep, hydrophobic pocket near the ATP-binding cleft of the enzyme; this binding pocket is not occupied by either AMP-PNP or staurosporine. CONCLUSIONS: The potency of staurosporine against Lck derives in part from an induced movement of the glycine-rich loop of the enzyme upon binding of this ligand, which maximizes the van der Waals interactions present in the complex. In contrast, PP2 binds tightly and selectively to Lck and other Src family kinases by making additional contacts in a deep, hydrophobic pocket adjacent to the ATP-binding site; the amino acid composition of this pocket is unique to Src family kinases. The structures of these Lck complexes offer useful structural insights as they demonstrate that kinase selectivity can be achieved with small-molecule inhibitors that exploit subtle topological differences among protein kinases.

Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors.,Zhu X, Kim JL, Newcomb JR, Rose PE, Stover DR, Toledo LM, Zhao H, Morgenstern KA Structure. 1999 Jun 15;7(6):651-61. PMID:10404594[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Gelkop S, Gish GD, Babichev Y, Pawson T, Isakov N. T cell activation-induced CrkII binding to the Zap70 protein tyrosine kinase is mediated by Lck-dependent phosphorylation of Zap70 tyrosine 315. J Immunol. 2005 Dec 15;175(12):8123-32. PMID:16339550
  2. Mason LH, Willette-Brown J, Taylor LS, McVicar DW. Regulation of Ly49D/DAP12 signal transduction by Src-family kinases and CD45. J Immunol. 2006 Jun 1;176(11):6615-23. PMID:16709819
  3. Goh YM, Cinghu S, Hong ET, Lee YS, Kim JH, Jang JW, Li YH, Chi XZ, Lee KS, Wee H, Ito Y, Oh BC, Bae SC. Src kinase phosphorylates RUNX3 at tyrosine residues and localizes the protein in the cytoplasm. J Biol Chem. 2010 Mar 26;285(13):10122-9. doi: 10.1074/jbc.M109.071381. Epub 2010, Jan 25. PMID:20100835 doi:10.1074/jbc.M109.071381
  4. Collins M, Tremblay M, Chapman N, Curtiss M, Rothman PB, Houtman JC. The T cell receptor-mediated phosphorylation of Pyk2 tyrosines 402 and 580 occurs via a distinct mechanism than other receptor systems. J Leukoc Biol. 2009 Dec 22. PMID:20028775 doi:jlb.0409227
  5. Wang H, Zeng X, Fan Z, Lim B. RhoH modulates pre-TCR and TCR signalling by regulating LCK. Cell Signal. 2011 Jan;23(1):249-58. doi: 10.1016/j.cellsig.2010.09.009. Epub 2010, Sep 16. PMID:20851766 doi:10.1016/j.cellsig.2010.09.009
  6. Scales TM, Derkinderen P, Leung KY, Byers HL, Ward MA, Price C, Bird IN, Perera T, Kellie S, Williamson R, Anderton BH, Reynolds CH. Tyrosine phosphorylation of tau by the SRC family kinases lck and fyn. Mol Neurodegener. 2011 Jan 26;6:12. doi: 10.1186/1750-1326-6-12. PMID:21269457 doi:10.1186/1750-1326-6-12
  7. Zhu X, Kim JL, Newcomb JR, Rose PE, Stover DR, Toledo LM, Zhao H, Morgenstern KA. Structural analysis of the lymphocyte-specific kinase Lck in complex with non-selective and Src family selective kinase inhibitors. Structure. 1999 Jun 15;7(6):651-61. PMID:10404594

1qpc, resolution 1.60Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA