1q6f

From Proteopedia
Jump to navigation Jump to search

Crystal Structure of Soybean Beta-Amylase Mutant (E178Y) with Increased pH Optimum at pH 7.1Crystal Structure of Soybean Beta-Amylase Mutant (E178Y) with Increased pH Optimum at pH 7.1

Structural highlights

1q6f is a 1 chain structure with sequence from Glycine max. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.1Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AMYB_SOYBN

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Comparison of the architecture around the active site of soybean beta-amylase and Bacillus cereus beta-amylase showed that the hydrogen bond networks (Glu380-(Lys295-Met51) and Glu380-Asn340-Glu178) in soybean beta-amylase around the base catalytic residue, Glu380, seem to contribute to the lower pH optimum of soybean beta-amylase. To convert the pH optimum of soybean beta-amylase (pH 5.4) to that of the bacterial type enzyme (pH 6.7), three mutants of soybean beta-amylase, M51T, E178Y, and N340T, were constructed such that the hydrogen bond networks were removed by site-directed mutagenesis. The kinetic analysis showed that the pH optimum of all mutants shifted dramatically to a neutral pH (range, from 5.4 to 6.0-6.6). The Km values of the mutants were almost the same as that of soybean beta-amylase except in the case of M51T, while the Vmax values of all mutants were low compared with that of soybean beta-amylase. The crystal structure analysis of the wild type-maltose and mutant-maltose complexes showed that the direct hydrogen bond between Glu380 and Asn340 was completely disrupted in the mutants M51T, E178Y, and N340T. In the case of M51T, the hydrogen bond between Glu380 and Lys295 was also disrupted. These results indicated that the reduced pKa value of Glu380 is stabilized by the hydrogen bond network and is responsible for the lower pH optimum of soybean beta-amylase compared with that of the bacterial beta-amylase.

Structural and enzymatic analysis of soybean beta-amylase mutants with increased pH optimum.,Hirata A, Adachi M, Sekine A, Kang YN, Utsumi S, Mikami B J Biol Chem. 2004 Feb 20;279(8):7287-95. Epub 2003 Nov 24. PMID:14638688[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hirata A, Adachi M, Sekine A, Kang YN, Utsumi S, Mikami B. Structural and enzymatic analysis of soybean beta-amylase mutants with increased pH optimum. J Biol Chem. 2004 Feb 20;279(8):7287-95. Epub 2003 Nov 24. PMID:14638688 doi:10.1074/jbc.M309411200

1q6f, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA