1ptj

From Proteopedia
Jump to navigation Jump to search

Crystal structure analysis of the DI and DIII complex of transhydrogenase with a thio-nicotinamide nucleotide analogueCrystal structure analysis of the DI and DIII complex of transhydrogenase with a thio-nicotinamide nucleotide analogue

Structural highlights

1ptj is a 3 chain structure with sequence from Rhodospirillum rubrum. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.61Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

PNTAA_RHORT The transhydrogenation between NADH and NADP is coupled to respiration and ATP hydrolysis and functions as a proton pump across the membrane.[UniProtKB:P07001]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Transhydrogenase couples the reduction of NADP+ by NADH to inward proton translocation across mitochondrial and bacterial membranes. The coupling reactions occur within the protein by long distance conformational changes. In intact transhydrogenase and in complexes formed from the isolated, nucleotide-binding components, thio-NADP(H) is a good analogue for NADP(H), but thio-NAD(H) is a poor analogue for NAD(H). Crystal structures of the nucleotide-binding components show that the twists of the 3-carbothiamide groups of thio-NADP+ and of thio-NAD+ (relative to the planes of the pyridine rings), which are defined by the dihedral, Xam, are altered relative to the twists of the 3-carboxamide groups of the physiological nucleotides. The finding that thio-NADP+ is a good substrate despite an increased Xam value shows that approach of the NADH prior to hydride transfer is not obstructed by the S atom in the analogue. That thio-NAD(H) is a poor substrate appears to be the result of failure in the conformational change that establishes the ground state for hydride transfer. This might be a consequence of restricted rotation of the 3-carbothiamide group during the conformational change.

Interactions between transhydrogenase and thio-nicotinamide Analogues of NAD(H) and NADP(H) underline the importance of nucleotide conformational changes in coupling to proton translocation.,Singh A, Venning JD, Quirk PG, van Boxel GI, Rodrigues DJ, White SA, Jackson JB J Biol Chem. 2003 Aug 29;278(35):33208-16. Epub 2003 Jun 5. PMID:12791694[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Singh A, Venning JD, Quirk PG, van Boxel GI, Rodrigues DJ, White SA, Jackson JB. Interactions between transhydrogenase and thio-nicotinamide Analogues of NAD(H) and NADP(H) underline the importance of nucleotide conformational changes in coupling to proton translocation. J Biol Chem. 2003 Aug 29;278(35):33208-16. Epub 2003 Jun 5. PMID:12791694 doi:10.1074/jbc.M303061200

1ptj, resolution 2.61Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA