1njq
NMR structure of the single QALGGH zinc finger domain from Arabidopsis thaliana SUPERMAN proteinNMR structure of the single QALGGH zinc finger domain from Arabidopsis thaliana SUPERMAN protein
Structural highlights
FunctionSUP_ARATH Probable transcriptional regulator considered as cadastral protein that acts indirectly to prevent the B class homeotic proteins APETALA3 and perhaps PISTILLATA from acting in the gynoecial whorl. Principal function is to balance cell proliferation in the third and fourth whorls of developing flowers thereby maintaining the boundary between stamens and carpels. May fulfill this role by repressing genes implicated in cell division. Plays equally a role in the determinacy of the floral meristem. Is also required for normal ovule development.[1] [2] [3] [4] [5] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedZinc finger domains of the classical type represent the most abundant DNA binding domains in eukaryotic transcription factors. Plant proteins contain from one to four zinc finger domains, which are characterized by high conservation of the sequence QALGGH, shown to be critical for DNA-binding activity. The Arabidopsis thaliana SUPERMAN protein, which contains a single QALGGH zinc finger, is necessary for proper spatial development of reproductive floral tissues and has been shown to specifically bind to DNA. Here, we report the synthesis and UV and NMR spectroscopic structural characterization of a 37 amino acid SUPERMAN region complexed to a Zn(2+) ion (Zn-SUP37) and present the first high-resolution structure of a classical zinc finger domain from a plant protein. The NMR structure of the SUPERMAN zinc finger domain consists of a very well-defined betabetaalpha motif, typical of all other Cys(2)-His(2) zinc fingers structurally characterized. As a consequence, the highly conserved QALGGH sequence is located at the N terminus of the alpha helix. This region of the domain of animal zinc finger proteins consists of hypervariable residues that are responsible for recognizing the DNA bases. Therefore, we propose a peculiar DNA recognition code for the QALGGH zinc finger domain that includes all or some of the amino acid residues at positions -1, 2, and 3 (numbered relative to the N terminus of the helix) and possibly others at the C-terminal end of the recognition helix. This study further confirms that the zinc finger domain, though very simple, is an extremely versatile DNA binding motif. NMR structure of the single QALGGH zinc finger domain from the Arabidopsis thaliana SUPERMAN protein.,Isernia C, Bucci E, Leone M, Zaccaro L, Di Lello P, Digilio G, Esposito S, Saviano M, Di Blasio B, Pedone C, Pedone PV, Fattorusso R Chembiochem. 2003 Mar 3;4(2-3):171-80. PMID:12616630[6] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|