1lfc

From Proteopedia
Jump to navigation Jump to search

BOVINE LACTOFERRICIN (LFCINB), NMR, 20 STRUCTURESBOVINE LACTOFERRICIN (LFCINB), NMR, 20 STRUCTURES

Structural highlights

1lfc is a 1 chain structure with sequence from Bos taurus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR, 20 models
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TRFL_BOVIN Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate.[1] [2] Lactotransferrin has antimicrobial activity. The most effective inhibitory activity was seen against E.coli and P.aeruginosa.[3] [4] Lactoferricin B is an antimicrobial peptide. Inhibits the growth of Gram-negative and Gram-positive bacteria.[5] [6] The lactotransferrin transferrin-like domain 1 functions as a serine protease of the peptidase S60 family that cuts arginine rich regions. This function contributes to the antimicrobial activity.[7] [8]

Publication Abstract from PubMed

The solution structure of bovine lactoferricin (LfcinB) has been determined using 2D 1H NMR spectroscopy. LfcinB is a 25-residue antimicrobial peptide released by pepsin cleavage of lactoferrin, an 80 kDa iron-binding glycoprotein with many immunologically important functions. The NMR structure of LfcinB reveals a somewhat distorted antiparallel beta-sheet. This contrasts with the X-ray structure of bovine lactoferrin, in which residues 1-13 (of LfcinB) form an alpha-helix. Hence, this region of lactoferricin B appears able to adopt a helical or sheetlike conformation, similar to what has been proposed for the amyloidogenic prion proteins and Alzheimer's beta-peptides. LfcinB has an extended hydrophobic surface comprised of residues Phe1, Cys3, Trp6, Trp8, Pro16, Ile18, and Cys20. The side chains of these residues are well-defined in the NMR structure. Many hydrophilic and positively charged residues surround the hydrophobic surface, giving LfcinB an amphipathic character. LfcinB bears numerous similarities to a vast number of cationic peptides which exert their antimicrobial activities through membrane disruption. The structures of many of these peptides have been well characterized, and models of their membrane-permeabilizing mechanisms have been proposed. The NMR solution structure of LfcinB may be more relevant to membrane interaction than that suggested by the X-ray structure of intact lactoferrin. Based on the solution structure, it is now possible to propose potential mechanisms for the antimicrobial action of LfcinB.

Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin.,Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ Biochemistry. 1998 Mar 24;37(12):4288-98. PMID:9521752[9]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R. Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother. 1997 Jan;41(1):54-9. PMID:8980754
  2. Massucci MT, Giansanti F, Di Nino G, Turacchio M, Giardi MF, Botti D, Ippoliti R, De Giulio B, Siciliano RA, Donnarumma G, Valenti P, Bocedi A, Polticelli F, Ascenzi P, Antonini G. Proteolytic activity of bovine lactoferrin. Biometals. 2004 Jun;17(3):249-55. PMID:15222473
  3. Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R. Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother. 1997 Jan;41(1):54-9. PMID:8980754
  4. Massucci MT, Giansanti F, Di Nino G, Turacchio M, Giardi MF, Botti D, Ippoliti R, De Giulio B, Siciliano RA, Donnarumma G, Valenti P, Bocedi A, Polticelli F, Ascenzi P, Antonini G. Proteolytic activity of bovine lactoferrin. Biometals. 2004 Jun;17(3):249-55. PMID:15222473
  5. Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R. Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother. 1997 Jan;41(1):54-9. PMID:8980754
  6. Massucci MT, Giansanti F, Di Nino G, Turacchio M, Giardi MF, Botti D, Ippoliti R, De Giulio B, Siciliano RA, Donnarumma G, Valenti P, Bocedi A, Polticelli F, Ascenzi P, Antonini G. Proteolytic activity of bovine lactoferrin. Biometals. 2004 Jun;17(3):249-55. PMID:15222473
  7. Hoek KS, Milne JM, Grieve PA, Dionysius DA, Smith R. Antibacterial activity in bovine lactoferrin-derived peptides. Antimicrob Agents Chemother. 1997 Jan;41(1):54-9. PMID:8980754
  8. Massucci MT, Giansanti F, Di Nino G, Turacchio M, Giardi MF, Botti D, Ippoliti R, De Giulio B, Siciliano RA, Donnarumma G, Valenti P, Bocedi A, Polticelli F, Ascenzi P, Antonini G. Proteolytic activity of bovine lactoferrin. Biometals. 2004 Jun;17(3):249-55. PMID:15222473
  9. Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ. Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry. 1998 Mar 24;37(12):4288-98. PMID:9521752 doi:10.1021/bi972323m
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA