1l9n
Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions change structure for activationThree-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions change structure for activation
Structural highlights
FunctionTGM3_HUMAN Catalyzes the calcium-dependent formation of isopeptide cross-links between glutamine and lysine residues in various proteins, as well as the conjugation of polyamines to proteins. Involved in the formation of the cornified envelope (CE), a specialized component consisting of covalent cross-links of proteins beneath the plasma membrane of terminally differentiated keratinocytes. Catalyzes small proline-rich proteins (SPRR1 and SPRR2) and LOR cross-linking to form small interchain oligomers, which are further cross-linked by TGM1 onto the growing CE scaffold (By similarity). In hair follicles, involved in cross-linking structural proteins to hardening the inner root sheath. Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTransglutaminase (TGase) enzymes catalyze the formation of covalent cross-links between protein-bound glutamines and lysines in a calcium-dependent manner, but the role of Ca(2+) ions remains unclear. The TGase 3 isoform is widely expressed and is important for epithelial barrier formation. It is a zymogen, requiring proteolysis for activity. We have solved the three-dimensional structures of the zymogen and the activated forms at 2.2 and 2.1 A resolution, respectively, and examined the role of Ca(2+) ions. The zymogen binds one ion tightly that cannot be exchanged. Upon proteolysis, the enzyme exothermally acquires two more Ca(2+) ions that activate the enzyme, are exchangeable and are functionally replaceable by other lanthanide trivalent cations. Binding of a Ca(2+) ion at one of these sites opens a channel which exposes the key Trp236 and Trp327 residues that control substrate access to the active site. Together, these biochemical and structural data reveal for the first time in a TGase enzyme that Ca(2+) ions induce structural changes which at least in part dictate activity and, moreover, may confer substrate specificity. Three-dimensional structure of the human transglutaminase 3 enzyme: binding of calcium ions changes structure for activation.,Ahvazi B, Kim HC, Kee SH, Nemes Z, Steinert PM EMBO J. 2002 May 1;21(9):2055-67. PMID:11980702[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|