1kri

From Proteopedia
Jump to navigation Jump to search

NMR Solution Structures of the Rhesus Rotavirus VP4 Sialic Acid Binding Domain without LigandNMR Solution Structures of the Rhesus Rotavirus VP4 Sialic Acid Binding Domain without Ligand

Structural highlights

1kri is a 1 chain structure with sequence from Simian rotavirus A strain RRV. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

VP4_ROTRH Spike-forming protein that mediates virion attachment to the host epithelial cell receptors and plays a major role in cell penetration, determination of host range restriction and virulence. It is subsequently lost, together with VP7, following virus entry into the host cell. Rotavirus attachment and entry into the host cell probably involves multiple sequential contacts between the outer capsid proteins VP4 and VP7, and the cell receptors. In sialic acid-dependent and/or integrin-dependent strains, VP4 seems to essentially target sialic acid and/or the integrin heterodimer ITGA2/ITGB1.[1] Outer capsid protein VP5*: forms the spike "foot" and "body". Acts as a membrane permeabilization protein that mediates release of viral particles from endosomal compartments into the cytoplasm. In integrin-dependent strains, VP5* targets the integrin heterodimer ITGA2/ITGB1 for cell attachment.[2] VP8* forms the head of the spikes. It is the viral hemagglutinin and an important target of neutralizing antibodies. In sialic acid-dependent strains, VP8* binds to host cell sialic acid, most probably a ganglioside, providing the initial contact.[3]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

See Also

References

  1. Kim IS, Trask SD, Babyonyshev M, Dormitzer PR, Harrison SC. Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry. J Virol. 2010 Jun;84(12):6200-7. doi: 10.1128/JVI.02461-09. Epub 2010 Apr 7. PMID:20375171 doi:http://dx.doi.org/10.1128/JVI.02461-09
  2. Kim IS, Trask SD, Babyonyshev M, Dormitzer PR, Harrison SC. Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry. J Virol. 2010 Jun;84(12):6200-7. doi: 10.1128/JVI.02461-09. Epub 2010 Apr 7. PMID:20375171 doi:http://dx.doi.org/10.1128/JVI.02461-09
  3. Kim IS, Trask SD, Babyonyshev M, Dormitzer PR, Harrison SC. Effect of mutations in VP5 hydrophobic loops on rotavirus cell entry. J Virol. 2010 Jun;84(12):6200-7. doi: 10.1128/JVI.02461-09. Epub 2010 Apr 7. PMID:20375171 doi:http://dx.doi.org/10.1128/JVI.02461-09
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA