1k0u

From Proteopedia
Jump to navigation Jump to search

Inhibition of S-adenosylhomocysteine Hydrolase by "acyclic sugar" Adenosine Analogue D-eritadenineInhibition of S-adenosylhomocysteine Hydrolase by "acyclic sugar" Adenosine Analogue D-eritadenine

Structural highlights

1k0u is a 8 chain structure with sequence from Rattus norvegicus. This structure supersedes the now removed PDB entry 1d4g. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

SAHH_RAT Adenosylhomocysteine is a competitive inhibitor of S-adenosyl-L-methionine-dependent methyl transferase reactions; therefore adenosylhomocysteinase may play a key role in the control of methylations via regulation of the intracellular concentration of adenosylhomocysteine.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

D-eritadenine (DEA) is a potent inhibitor (IC(50) = 7 nm) of S-adenosyl-l-homocysteine hydrolase (AdoHcyase). Unlike cyclic sugar Ado analogue inhibitors, including mechanism-based inhibitors, DEA is an acyclic sugar Ado analogue, and the C2' and C3' have opposite chirality to those of the cyclic sugar Ado inhibitors. Crystal structures of DEA alone and in complex with AdoHcyase have been determined to elucidate the DEA binding scheme to AdoHcyase. The DEA-complexed structure has been analyzed by comparing it with two structures of AdoHcyase complexed with cyclic sugar Ado analogues. The DEA-complexed structure has a closed conformation, and the DEA is located near the bound NAD(+). However, a UV absorption measurement shows that DEA is not oxidized by the bound NAD(+), indicating that the open-closed conformational change of AdoHcyase is due to the substrate/inhibitor binding, not the oxidation state of the bound NAD. The adenine ring of DEA is recognized by four essential hydrogen bonds as observed in the cyclic sugar Ado complexes. The hydrogen bond network around the acyclic sugar moiety indicates that DEA is more tightly connected to the protein than the cyclic sugar Ado analogues. The C3'-H of DEA is pointed toward C4 of the bound NAD(+) (C3'...C4 = 3.7 A), suggesting some interaction between DEA and NAD(+). By placing DEA into the active site of the open structure, the major forces to stabilize the closed conformation of AdoHcyase are identified as the hydrogen bonds between the backbone of His-352 and the adenine ring, and the C3'-H...C4 interaction. DEA has been believed to be an inactivator of AdoHcyase, but this study indicates that DEA is a reversible inhibitor. On the basis of the complexed structure, selective inhibitors of AdoHcyase have been designed.

Inhibition of S-adenosylhomocysteine hydrolase by acyclic sugar adenosine analogue D-eritadenine. Crystal structure of S-adenosylhomocysteine hydrolase complexed with D-eritadenine.,Huang Y, Komoto J, Takata Y, Powell DR, Gomi T, Ogawa H, Fujioka M, Takusagawa F J Biol Chem. 2002 Mar 1;277(9):7477-82. Epub 2001 Dec 10. PMID:11741948[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Huang Y, Komoto J, Takata Y, Powell DR, Gomi T, Ogawa H, Fujioka M, Takusagawa F. Inhibition of S-adenosylhomocysteine hydrolase by acyclic sugar adenosine analogue D-eritadenine. Crystal structure of S-adenosylhomocysteine hydrolase complexed with D-eritadenine. J Biol Chem. 2002 Mar 1;277(9):7477-82. Epub 2001 Dec 10. PMID:11741948 doi:10.1074/jbc.M109187200

1k0u, resolution 3.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA