1imb

From Proteopedia
Jump to navigation Jump to search

STRUCTURAL ANALYSIS OF INOSITOL MONOPHOSPHATASE COMPLEXES WITH SUBSTRATESSTRUCTURAL ANALYSIS OF INOSITOL MONOPHOSPHATASE COMPLEXES WITH SUBSTRATES

Structural highlights

1imb is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

IMPA1_HUMAN Responsible for the provision of inositol required for synthesis of phosphatidylinositol and polyphosphoinositides and has been implicated as the pharmacological target for lithium action in brain. Can use myo-inositol monophosphates, myo-inositol 1,3-diphosphate, myo-inositol 1,4-diphosphate, scyllo-inositol-phosphate, glucose-1-phosphate, glucose-6-phosphate, fructose-1-phosphate, beta-glycerophosphate, and 2'-AMP as substrates.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The structures of ternary complexes of human inositol monophosphatase with inhibitory Gd3+ and either D- or L-myo-inositol 1-phosphate have been determined to 2.2-2.3 A resolution using X-ray crystallography. Substrate and metal are bound identically in each active site of the phosphatase dimer. The substrate is present at full occupancy, while the metal is present at only 35% occupancy, suggesting that Li+ from the crystallization solvent partially replaces Gd3+ upon substrate binding. The phosphate groups of both substrates interact with the phosphatase in the same manner with one phosphate oxygen bound to the octahedrally coordinated active site metal and another oxygen forming hydrogen bonds with the amide groups of residues 94 and 95. The active site orientations of the inositol rings of D- and L-myo-inositol 1-phosphate differ by rotation of nearly 60 degrees about the phosphate ester bond. Each substrate utilizes the same key residues (Asp 93, Ala 196, Glu 213, and Asp 220) to form the same number of hydrogen bonds with the enzyme. Mutagenesis experiments confirm the interaction of Glu 213 with the inositol ring and suggest that interactions with Ser 165 may develop during the transition state. The structural data suggest that the active site nucleophile is a metal-bound water that is activated by interaction with Glu 70 and Thr 95. Expulsion of the ester oxygen appears to be promoted by three aspartate residues acting together (90, 93, and 220), either to donate a proton to the leaving group or to form another metal binding site from which a second Mg2+ coordinates the leaving group during the transition state.

Structural analysis of inositol monophosphatase complexes with substrates.,Bone R, Frank L, Springer JP, Pollack SJ, Osborne SA, Atack JR, Knowles MR, McAllister G, Ragan CI, Broughton HB, et al. Biochemistry. 1994 Aug 16;33(32):9460-7. PMID:8068620[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Ohnishi T, Ohba H, Seo KC, Im J, Sato Y, Iwayama Y, Furuichi T, Chung SK, Yoshikawa T. Spatial expression patterns and biochemical properties distinguish a second myo-inositol monophosphatase IMPA2 from IMPA1. J Biol Chem. 2007 Jan 5;282(1):637-46. Epub 2006 Oct 26. PMID:17068342 doi:http://dx.doi.org/10.1074/jbc.M604474200
  2. Bone R, Frank L, Springer JP, Pollack SJ, Osborne SA, Atack JR, Knowles MR, McAllister G, Ragan CI, Broughton HB, et al.. Structural analysis of inositol monophosphatase complexes with substrates. Biochemistry. 1994 Aug 16;33(32):9460-7. PMID:8068620

1imb, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA