1hzp
Crystal Structure of the Myobacterium Tuberculosis Beta-Ketoacyl-Acyl Carrier Protein Synthase IIICrystal Structure of the Myobacterium Tuberculosis Beta-Ketoacyl-Acyl Carrier Protein Synthase III
Structural highlights
FunctionFABH_MYCTU Catalyzes the condensation reaction of fatty acid synthesis by the addition to an acyl acceptor of two carbons from malonyl-ACP. Catalyzes the first condensation reaction which initiates fatty acid synthesis and may therefore play a role in governing the total rate of fatty acid production. Possesses both acetoacetyl-ACP synthase and acetyl transacylase activities. Has some substrate specificity for long chain acyl-CoA such as myristoyl-CoA. Does not use acyl-CoA as primer. Its substrate specificity determines the biosynthesis of mycolic acid fatty acid chain, which is characteristic of mycobacterial cell wall.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedMycolic acids (alpha-alkyl-beta-hydroxy long chain fatty acids) cover the surface of mycobacteria, and inhibition of their biosynthesis is an established mechanism of action for several key front-line anti-tuberculosis drugs. In mycobacteria, long chain acyl-CoA products (C(14)-C(26)) generated by a type I fatty-acid synthase can be used directly for the alpha-branch of mycolic acid or can be extended by a type II fatty-acid synthase to make the meromycolic acid (C(50)-C(56)))-derived component. An unusual Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein (ACP) synthase III (mtFabH) has been identified, purified, and shown to catalyze a Claisen-type condensation between long chain acyl-CoA substrates such as myristoyl-CoA (C(14)) and malonyl-ACP. This enzyme, presumed to play a key role in initiating meromycolic acid biosynthesis, was crystallized, and its structure was determined at 2.1-A resolution. The mtFabH homodimer is closely similar in topology and active-site structure to Escherichia coli FabH (ecFabH), with a CoA/malonyl-ACP-binding channel leading from the enzyme surface to the buried active-site cysteine residue. Unlike ecFabH, mtFabH contains a second hydrophobic channel leading from the active site. In the ecFabH structure, this channel is blocked by a phenylalanine residue, which constrains specificity to acetyl-CoA, whereas in mtFabH, this residue is a threonine, which permits binding of longer acyl chains. This same channel in mtFabH is capped by an alpha-helix formed adjacent to a 4-amino acid sequence insertion, which limits bound acyl chain length to 16 carbons. These observations offer a molecular basis for understanding the unusual substrate specificity of mtFabH and its probable role in regulating the biosynthesis of the two different length acyl chains required for generation of mycolic acids. This mtFabH presents a new target for structure-based design of novel antimycobacterial agents. Crystal structure of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III.,Scarsdale JN, Kazanina G, He X, Reynolds KA, Wright HT J Biol Chem. 2001 Jun 8;276(23):20516-22. Epub 2001 Mar 8. PMID:11278743[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|