1hns

From Proteopedia
Jump to navigation Jump to search

H-NS (DNA-BINDING DOMAIN)H-NS (DNA-BINDING DOMAIN)

Structural highlights

1hns is a 1 chain structure with sequence from Escherichia coli. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HNS_ECOLI A DNA-binding protein implicated in transcriptional repression (silencing) as well as in bacterial chromosome organization. H-NS binds tightly to AT-rich dsDNA, increases its thermal stability and inhibits transcription. Also binds to ssDNA and RNA but with a much lower affinity. H-NS has possible histone-like function. May be a global transcriptional regulator through its ability to bind to curved DNA sequences, which are found in regions upstream of a certain subset of promoters. Plays a role in the thermal control of pili and adhesive curli fimbriae production, by inducing transcription of csgD. Represses the CRISPR-cas promoters, permits only weak transcription of the crRNA precursor; its role is antagonized by LeuO. Subject to transcriptional auto-repression. Binds preferentially to the upstream region of its own gene recognizing two segments of DNA on both sides of a bend centered around -150.[1] [2] [3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The three-dimensional structure of the C-terminal domain (47 residues) obtained from the hydrolysis of H-NS protein with bovine trypsin was determined by NMR measurements and distance geometry calculations. It is composed of an antiparallel beta-sheet, an alpha-helix and a 3(10)-helix which form a hydrophobic core, stabilizing the whole structure. This domain has been found to bind to DNA. Possible DNA binding sites are discussed on the basis of the solution structure of the C-terminal domain of H-NS.

Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli.,Shindo H, Iwaki T, Ieda R, Kurumizaka H, Ueguchi C, Mizuno T, Morikawa S, Nakamura H, Kuboniwa H FEBS Lett. 1995 Feb 27;360(2):125-31. PMID:7875316[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Falconi M, Higgins NP, Spurio R, Pon CL, Gualerzi CO. Expression of the gene encoding the major bacterial nucleotide protein H-NS is subject to transcriptional auto-repression. Mol Microbiol. 1993 Oct;10(2):273-82. PMID:7934818
  2. Ko M, Park C. Two novel flagellar components and H-NS are involved in the motor function of Escherichia coli. J Mol Biol. 2000 Oct 27;303(3):371-82. PMID:11031114 doi:http://dx.doi.org/10.1006/jmbi.2000.4147
  3. Weber H, Pesavento C, Possling A, Tischendorf G, Hengge R. Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli. Mol Microbiol. 2006 Nov;62(4):1014-34. Epub 2006 Sep 29. PMID:17010156 doi:http://dx.doi.org/MMI5440
  4. Westra ER, Pul U, Heidrich N, Jore MM, Lundgren M, Stratmann T, Wurm R, Raine A, Mescher M, Van Heereveld L, Mastop M, Wagner EG, Schnetz K, Van Der Oost J, Wagner R, Brouns SJ. H-NS-mediated repression of CRISPR-based immunity in Escherichia coli K12 can be relieved by the transcription activator LeuO. Mol Microbiol. 2010 Sep;77(6):1380-93. doi: 10.1111/j.1365-2958.2010.07315.x., Epub 2010 Aug 18. PMID:20659289 doi:http://dx.doi.org/10.1111/j.1365-2958.2010.07315.x
  5. Shindo H, Iwaki T, Ieda R, Kurumizaka H, Ueguchi C, Mizuno T, Morikawa S, Nakamura H, Kuboniwa H. Solution structure of the DNA binding domain of a nucleoid-associated protein, H-NS, from Escherichia coli. FEBS Lett. 1995 Feb 27;360(2):125-31. PMID:7875316
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA