1hfx

From Proteopedia
Jump to navigation Jump to search

ALPHA-LACTALBUMINALPHA-LACTALBUMIN

Structural highlights

1hfx is a 1 chain structure with sequence from Cavia porcellus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.9Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LALBA_CAVPO Regulatory subunit of lactose synthase, changes the substrate specificity of galactosyltransferase in the mammary gland making glucose a good acceptor substrate for this enzyme. This enables LS to synthesize lactose, the major carbohydrate component of milk. In other tissues, galactosyltransferase transfers galactose onto the N-acetylglucosamine of the oligosaccharide chains in glycoproteins.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

BACKGROUND: The regulation of milk lactose biosynthesis is highly dependent on the action of a specifier protein, alpha-lactalbumin (LA). Together with a glycosyltransferase, LA forms the enzyme complex lactose synthase. LA promotes the binding of glucose to the complex and facilitates the biosynthesis of lactose. To gain further insight into the molecular basis of LA function in lactose synthase we have determined the structures of three species variants of LA. RESULTS: The crystal structures of guinea-pig, goat and a recombinant from of bovine LA have been determined using molecular replacement techniques. Overall, the structures are very similar and reflect their high degree of amino acid sequence identity (66-94%). Nonetheless, the structures show that a portion of the molecule (residues 105-110), known to be important for function, exhibits a variety of distinct conformers. This region lies adjacent to two residues (Phe31 and His32) that have been implicated in monosaccharide binding by lactose synthase and its conformation has significant effects on the environments of these functional groups. The crystal structures also demonstrate that residues currently implicated in LA's modulatory properties are located in a region of the structure that has relatively high thermal parameters and is therefore probably flexible in vivo. CONCLUSIONS: LA's proposed interaction site for the catalytic component of the lactose synthase complex is primarily located in the flexible C-terminal portion of the molecule. This general observation implies that conformational adjustments may be important for the formation and function of lactose synthase.

Crystal structures of guinea-pig, goat and bovine alpha-lactalbumin highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase.,Pike AC, Brew K, Acharya KR Structure. 1996 Jun 15;4(6):691-703. PMID:8805552[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Pike AC, Brew K, Acharya KR. Crystal structures of guinea-pig, goat and bovine alpha-lactalbumin highlight the enhanced conformational flexibility of regions that are significant for its action in lactose synthase. Structure. 1996 Jun 15;4(6):691-703. PMID:8805552

1hfx, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA