1heo

From Proteopedia
Jump to navigation Jump to search

STRUCTURAL AND THERMODYNAMIC ANALYSIS OF COMPENSATING MUTATIONS WITHIN THE CORE OF CHICKEN EGG WHITE LYSOZYMESTRUCTURAL AND THERMODYNAMIC ANALYSIS OF COMPENSATING MUTATIONS WITHIN THE CORE OF CHICKEN EGG WHITE LYSOZYME

Structural highlights

1heo is a 1 chain structure with sequence from Gallus gallus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

LYSC_CHICK Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

High resolution crystal structures have been determined for six chicken-type lysozymes that were constructed to investigate putative intermediates in the evolution of the lysozymes of modern game birds (Malcolm, B. A., Wilson, K. P., Matthews, B. W., Kirsch, J. F., and Wilson, A. C. (1990) Nature 345, 86-89). The amino acid replacements include Thr-40----Ser, Ile-55----Val, and Ser-91----Thr, as well as combinations of these substitutions. Residues 40, 55, and 91 are buried within the core of chicken lysozyme. The replacements therefore involve the insertion and/or removal of methyl groups from the protein interior. The mutant proteins have normal activities, and their thermal stabilities span a range of 7 degrees C, with some variants more stable and some less stable than the naturally occurring forms. Comparison of the crystal structures shows the overall structures to be very similar, but there are differences in the packing of side chains in the region of the replacements. The x-ray coordinates were used to evaluate the repacking of side chains in the protein interior and to attempt to evaluate the contributions of the different energetic interactions toward the overall stability of each variant. The results illustrate how proteins can compensate for potentially destabilizing substitutions in different ways and underscore the importance of high resolution structural data if changes in protein thermostability due to changes in protein sequence are to be understood. The findings also suggest that protein stability can be increased by mutations that lower strain in the protein interior while maintaining total buried hydrophobic surface area.

Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme.,Wilson KP, Malcolm BA, Matthews BW J Biol Chem. 1992 May 25;267(15):10842-9. PMID:1587860[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Maehashi K, Matano M, Irisawa T, Uchino M, Kashiwagi Y, Watanabe T. Molecular characterization of goose- and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene. 2012 Jan 15;492(1):244-9. doi: 10.1016/j.gene.2011.10.021. Epub 2011 Oct, 25. PMID:22044478 doi:10.1016/j.gene.2011.10.021
  2. Wilson KP, Malcolm BA, Matthews BW. Structural and thermodynamic analysis of compensating mutations within the core of chicken egg white lysozyme. J Biol Chem. 1992 May 25;267(15):10842-9. PMID:1587860

1heo, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA