1gq5

From Proteopedia
Jump to navigation Jump to search

Structural Determinants of the NHERF Interaction with beta2-AR and PDGFRStructural Determinants of the NHERF Interaction with beta2-AR and PDGFR

Structural highlights

1gq5 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.2Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

NHRF1_HUMAN Defects in SLC9A3R1 are the cause of hypophosphatemic nephrolithiasis/osteoporosis type 2 (NPHLOP2) [MIM:612287. Hypophosphatemia results from idiopathic renal phosphate loss. It contributes to the pathogenesis of hypophosphatemic urolithiasis (formation of urinary calculi) as well to that of hypophosphatemic osteoporosis (bone demineralization).[1] [2]

Function

NHRF1_HUMAN Scaffold protein that connects plasma membrane proteins with members of the ezrin/moesin/radixin family and thereby helps to link them to the actin cytoskeleton and to regulate their surface expression. Necessary for recycling of internalized ADRB2. Was first known to play a role in the regulation of the activity and subcellular location of SLC9A3. Necessary for cAMP-mediated phosphorylation and inhibition of SLC9A3. May enhance Wnt signaling. May participate in HTR4 targeting to microvilli (By similarity). Involved in the regulation of phosphate reabsorption in the renal proximal tubules.[3] [4] [5] [6]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The Na(+)/H(+) exchanger regulatory factor (NHERF) binds through its PDZ1 domain to the carboxyl-terminal sequences NDSLL and EDSFL of the beta(2) adrenergic receptor (beta(2)AR) and platelet-derived growth factor receptor, respectively, and plays a critical role in the membrane localization and physiological regulation of these receptors. The crystal structures of the human NHERF PDZ1 domain bound to the sequences NDSLL and EDSFL have been determined at 1.9- and 2.2-A resolution, respectively. The beta(2)AR and platelet-derived growth factor receptor ligands insert into the PDZ1 binding pocket by a beta-sheet augmentation process and are stabilized by largely similar networks of hydrogen bonds and hydrophobic contacts. In the PDZ1-beta(2)AR complex, the side chain of asparagine at position -4 in the beta(2)AR peptide forms two additional hydrogen bonds with Gly(30) of PDZ1, which contribute to the higher affinity of this interaction. Remarkably, both complexes are further stabilized by hydrophobic interactions involving the side chains of the penultimate amino acids of the peptide ligands, whereas the PDZ1 residues Asn(22) and Glu(43) undergo conformational changes to accommodate these side chains. These results provide structural insights into the mechanisms by which different side chains at the position -1 of peptide ligands interact with PDZ domains and contribute to the affinity of the PDZ-ligand interaction.

Structural determinants of the Na+/H+ exchanger regulatory factor interaction with the beta 2 adrenergic and platelet-derived growth factor receptors.,Karthikeyan S, Leung T, Ladias JA J Biol Chem. 2002 May 24;277(21):18973-8. Epub 2002 Mar 6. PMID:11882663[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Karim Z, Gerard B, Bakouh N, Alili R, Leroy C, Beck L, Silve C, Planelles G, Urena-Torres P, Grandchamp B, Friedlander G, Prie D. NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med. 2008 Sep 11;359(11):1128-35. PMID:18784102 doi:359/11/1128
  2. Courbebaisse M, Leroy C, Bakouh N, Salaun C, Beck L, Grandchamp B, Planelles G, Hall RA, Friedlander G, Prie D. A new human NHERF1 mutation decreases renal phosphate transporter NPT2a expression by a PTH-independent mechanism. PLoS One. 2012;7(4):e34764. doi: 10.1371/journal.pone.0034764. Epub 2012 Apr 10. PMID:22506049 doi:10.1371/journal.pone.0034764
  3. Murthy A, Gonzalez-Agosti C, Cordero E, Pinney D, Candia C, Solomon F, Gusella J, Ramesh V. NHE-RF, a regulatory cofactor for Na(+)-H+ exchange, is a common interactor for merlin and ERM (MERM) proteins. J Biol Chem. 1998 Jan 16;273(3):1273-6. PMID:9430655
  4. Yun CH, Oh S, Zizak M, Steplock D, Tsao S, Tse CM, Weinman EJ, Donowitz M. cAMP-mediated inhibition of the epithelial brush border Na+/H+ exchanger, NHE3, requires an associated regulatory protein. Proc Natl Acad Sci U S A. 1997 Apr 1;94(7):3010-5. PMID:9096337
  5. Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature. 1999 Sep 16;401(6750):286-90. PMID:10499588 doi:10.1038/45816
  6. Karim Z, Gerard B, Bakouh N, Alili R, Leroy C, Beck L, Silve C, Planelles G, Urena-Torres P, Grandchamp B, Friedlander G, Prie D. NHERF1 mutations and responsiveness of renal parathyroid hormone. N Engl J Med. 2008 Sep 11;359(11):1128-35. PMID:18784102 doi:359/11/1128
  7. Karthikeyan S, Leung T, Ladias JA. Structural determinants of the Na+/H+ exchanger regulatory factor interaction with the beta 2 adrenergic and platelet-derived growth factor receptors. J Biol Chem. 2002 May 24;277(21):18973-8. Epub 2002 Mar 6. PMID:11882663 doi:10.1074/jbc.M201507200

1gq5, resolution 2.20Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA