1f88

From Proteopedia
Jump to navigation Jump to search

CRYSTAL STRUCTURE OF BOVINE RHODOPSINCRYSTAL STRUCTURE OF BOVINE RHODOPSIN

Structural highlights

1f88 is a 2 chain structure with sequence from Bos taurus. The March 2002 RCSB PDB Molecule of the Month feature on Bacteriorhodopsin by David S. Goodsell is 10.2210/rcsb_pdb/mom_2002_3. The October 2004 RCSB PDB Molecule of the Month feature on G Proteins by David S. Goodsell is 10.2210/rcsb_pdb/mom_2004_10. The June 2005 RCSB PDB Molecule of the Month feature on Carotenoid Oxygenase by David S. Goodsell is 10.2210/rcsb_pdb/mom_2005_6. The April 2008 RCSB PDB Molecule of the Month feature on Adrenergic Receptors by David S. Goodsell is 10.2210/rcsb_pdb/mom_2008_4. The March 2012 RCSB PDB Molecule of the Month feature on Rhodopsin by David Goodsell is 10.2210/rcsb_pdb/mom_2012_3. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.8Å
Ligands:, , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

OPSD_BOVIN Photoreceptor required for image-forming vision at low light intensity. Required for photoreceptor cell viability after birth. Light-induced isomerization of 11-cis to all-trans retinal triggers a conformational change leading to G-protein activation and release of all-trans retinal (By similarity).[1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Heterotrimeric guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs) respond to a variety of different external stimuli and activate G proteins. GPCRs share many structural features, including a bundle of seven transmembrane alpha helices connected by six loops of varying lengths. We determined the structure of rhodopsin from diffraction data extending to 2.8 angstroms resolution. The highly organized structure in the extracellular region, including a conserved disulfide bridge, forms a basis for the arrangement of the seven-helix transmembrane motif. The ground-state chromophore, 11-cis-retinal, holds the transmembrane region of the protein in the inactive conformation. Interactions of the chromophore with a cluster of key residues determine the wavelength of the maximum absorption. Changes in these interactions among rhodopsins facilitate color discrimination. Identification of a set of residues that mediate interactions between the transmembrane helices and the cytoplasmic surface, where G-protein activation occurs, also suggests a possible structural change upon photoactivation.

Crystal structure of rhodopsin: A G protein-coupled receptor.,Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M Science. 2000 Aug 4;289(5480):739-45. PMID:10926528[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Nakamichi H, Okada T. Local peptide movement in the photoreaction intermediate of rhodopsin. Proc Natl Acad Sci U S A. 2006 Aug 22;103(34):12729-34. Epub 2006 Aug 14. PMID:16908857
  2. Salom D, Lodowski DT, Stenkamp RE, Le Trong I, Golczak M, Jastrzebska B, Harris T, Ballesteros JA, Palczewski K. Crystal structure of a photoactivated deprotonated intermediate of rhodopsin. Proc Natl Acad Sci U S A. 2006 Oct 31;103(44):16123-8. Epub 2006 Oct 23. PMID:17060607
  3. Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 2000 Aug 4;289(5480):739-45. PMID:10926528

1f88, resolution 2.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA