1d6y

From Proteopedia
Jump to navigation Jump to search

CRYSTAL STRUCTURE OF E. COLI COPPER-CONTAINING AMINE OXIDASE ANAEROBICALLY REDUCED WITH BETA-PHENYLETHYLAMINE AND COMPLEXED WITH NITRIC OXIDE.CRYSTAL STRUCTURE OF E. COLI COPPER-CONTAINING AMINE OXIDASE ANAEROBICALLY REDUCED WITH BETA-PHENYLETHYLAMINE AND COMPLEXED WITH NITRIC OXIDE.

Structural highlights

1d6y is a 2 chain structure with sequence from Escherichia coli. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.4Å
Ligands:, , , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AMO_ECOLI The enzyme prefers aromatic over aliphatic amines.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

X-ray crystal structures of three species related to the oxidative half of the reaction of the copper-containing quinoprotein amine oxidase from Escherichia coli have been determined. Crystals were freeze-trapped either anaerobically or aerobically after exposure to substrate, and structures were determined to resolutions between 2.1 and 2.4 angstroms. The oxidation state of the quinone cofactor was investigated by single-crystal spectrophotometry. The structures reveal the site of bound dioxygen and the proton transfer pathways involved in oxygen reduction. The quinone cofactor is regenerated from the iminoquinone intermediate by hydrolysis involving Asp383, the catalytic base in the reductive half-reaction. Product aldehyde inhibits the hydrolysis, making release of product the rate-determining step of the reaction in the crystal.

Visualization of dioxygen bound to copper during enzyme catalysis.,Wilmot CM, Hajdu J, McPherson MJ, Knowles PF, Phillips SE Science. 1999 Nov 26;286(5445):1724-8. PMID:10576737[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Wilmot CM, Hajdu J, McPherson MJ, Knowles PF, Phillips SE. Visualization of dioxygen bound to copper during enzyme catalysis. Science. 1999 Nov 26;286(5445):1724-8. PMID:10576737

1d6y, resolution 2.40Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA