1c07
STRUCTURE OF THE THIRD EPS15 HOMOLOGY DOMAIN OF HUMAN EPS15STRUCTURE OF THE THIRD EPS15 HOMOLOGY DOMAIN OF HUMAN EPS15
Structural highlights
DiseaseEPS15_HUMAN Note=A chromosomal aberration involving EPS15 is found in acute leukemias. Translocation t(1;11)(p32;q23) with MLL/HRX. The result is a rogue activator protein. FunctionEPS15_HUMAN Involved in cell growth regulation. May be involved in the regulation of mitogenic signals and control of cell proliferation. Involved in the internalization of ligand-inducible receptors of the receptor tyrosine kinase (RTK) type, in particular EGFR. Plays a role in the assembly of clathrin-coated pits (CCPs). Seems to be involved in CCPs maturation including invagination or budding. Involved in endocytosis of integrin beta-1 (ITGB1) and transferrin receptor (TFR); internalization of ITGB1 as DAB2-dependent cargo but not TFR seems to require association with DAB2.[1] [2] [3] [4] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedEps15 homology (EH) domains interact with proteins involved in endocytosis and signal transduction. EH domains bind to Asn-Pro-Phe (NPF) consensus motifs of target proteins. A few EH domains, such as the third EH domain (EH(3)) of human Eps15, prefer to bind Phe-Trp (FW) sequences. The structure of EH(3) has been solved by nuclear magnetic resonance (NMR) spectroscopy and is the first of an FW- and NPF-binding EH domain. Both FW and NPF sequences bind in the same hydrophobic pocket as shown by heteronuclear chemical shift mapping. EH(3) contains the dual EF-hand fold characteristic of the EH domain family, but it binds calcium with high affinity in the first EF-hand rather than the usual coordination in the second EF-hand. Point mutations were designed based on differences in the EH(3) and the second EH domain (EH(2)) of human Eps15 that alter the affinity of the domains for FW or NPF motif peptides. Peptides that mimic binding sites in the potential EH(3) targets Rab, synaptojanin, and the cation-dependent mannose 6-phosphate receptor were used to explore wild-type and mutant affinities. Characterization of the structure and binding properties of an FW- and NPF-binding EH domain and comparison to an NPF-specific EH domain provide important insights into the mechanisms of EH domain ligand recognition. Solution structure of Eps15's third EH domain reveals coincident Phe-Trp and Asn-Pro-Phe binding sites.,Enmon JL, de Beer T, Overduin M Biochemistry. 2000 Apr 18;39(15):4309-19. PMID:10757979[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|