1b9k
ALPHA-ADAPTIN APPENDAGE DOMAIN, FROM CLATHRIN ADAPTOR AP2ALPHA-ADAPTIN APPENDAGE DOMAIN, FROM CLATHRIN ADAPTOR AP2
Structural highlights
FunctionAP2A2_MOUSE Component of the adaptor protein complex 2 (AP-2). Adaptor protein complexes function in protein transport via transport vesicles in different membrane traffic pathways. Adaptor protein complexes are vesicle coat components and appear to be involved in cargo selection and vesicle formation. AP-2 is involved in clathrin-dependent endocytosis in which cargo proteins are incorporated into vesicles surrounded by clathrin (clathrin-coated vesicles, CCVs) which are destined for fusion with the early endosome. The clathrin lattice serves as a mechanical scaffold but is itself unable to bind directly to membrane components. Clathrin-associated adaptor protein (AP) complexes which can bind directly to both the clathrin lattice and to the lipid and protein components of membranes are considered to be the major clathrin adaptors contributing the CCV formation. AP-2 also serves as a cargo receptor to selectively sort the membrane proteins involved in receptor-mediated endocytosis. AP-2 seems to play a role in the recycling of synaptic vesicle membranes from the presynaptic surface. AP-2 recognizes Y-X-X-[FILMV] (Y-X-X-Phi) and [ED]-X-X-X-L-[LI] endocytosis signal motifs within the cytosolic tails of transmembrane cargo molecules. AP-2 may also play a role in maintaining normal post-endocytic trafficking through the ARF6-regulated, non-clathrin pathway. The AP-2 alpha subunit binds polyphosphoinositide-containing lipids, positioning AP-2 on the membrane. The AP-2 alpha subunit acts via its C-terminal appendage domain as a scaffolding platform for endocytic accessory proteins. The AP-2 alpha and AP-2 sigma subunits are thought to contribute to the recognition of the [ED]-X-X-X-L-[LI] motif.[1] [2] [3] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe alpha subunit of the endocytotic AP2 adaptor complex contains a 30 kDa "appendage" domain, which is joined to the rest of the protein via a flexible linker. The 1.9 A resolution crystal structure of this domain reveals a single binding site for its ligands, which include amphiphysin, Eps15, and epsin. This domain when overexpressed in COS7 fibroblasts is shown to inhibit transferrin uptake, whereas mutants in which interactions with its binding partners are abolished do not. DPF/W motifs present in appendage domain-binding partners are shown to play a crucial role in their interactions with the domain. A single site for binding multiple ligands would allow for temporal and spatial regulation in the recruitment of components of the endocytic machinery. A structural explanation for the binding of multiple ligands by the alpha-adaptin appendage domain.,Owen DJ, Vallis Y, Noble ME, Hunter JB, Dafforn TR, Evans PR, McMahon HT Cell. 1999 Jun 11;97(6):805-15. PMID:10380931[4] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|