RECOMBINANT HUMAN DIFERRIC LACTOFERRINRECOMBINANT HUMAN DIFERRIC LACTOFERRIN
Structural highlights
1b0l is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
TRFL_HUMAN Transferrins are iron binding transport proteins which can bind two Fe(3+) ions in association with the binding of an anion, usually bicarbonate.[1][2] Lactotransferrin has antimicrobial activity which depends on the extracellular cation concentration.[3][4] Lactoferroxins A, B and C have opioid antagonist activity. Lactoferroxin A shows preference for mu-receptors, while lactoferroxin B and C have somewhat higher degrees of preference for kappa-receptors than for mu-receptors.[5][6] The lactotransferrin transferrin-like domain 1 functions as a serine protease of the peptidase S60 family that cuts arginine rich regions. This function contributes to the antimicrobial activity.[7][8] Isoform DeltaLf: transcription factor with antiproliferative properties and inducing cell cycle arrest. Binds to DeltaLf response element found in the SKP1, BAX, DCPS, and SELH promoters.[9][10]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
Human lactoferrin (hLf) has considerable potential as a therapeutic agent. Overexpression of hLf in the fungus Aspergillus awamori has resulted in the availability of very large quantities of this protein. Here, the three-dimensional structure of the recombinant hLf has been determined by X-ray crystallography at a resolution of 2.2 A. The final model, comprising 5339 protein atoms (residues 1-691, 294 solvent molecules, two Fe3+and two CO32- ions), gives an R factor of 0.181 (free R = 0.274) after refinement against 32231 reflections in the resolution range 10-2.2 A. Superposition of the recombinant hLf structure onto the native milk hLf structure shows a very high level of correspondence; the main-chain atoms for the entire polypeptide can be superimposed with an r.m.s. deviation of only 0.3 A and there are no significant differences in side-chain conformations or in the iron-binding sites. Dynamic properties, as measured by B-value distributions or iron-release kinetics, also agree closely. This shows that the structure of the protein is not affected by the mode of expression, the use of strain-improvement procedures or the changes in glycosylation due to the fungal system.
Structure of recombinant human lactoferrin expressed in Aspergillus awamori.,Sun XL, Baker HM, Shewry SC, Jameson GB, Baker EN Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):403-7. PMID:10089347[11]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑Hendrixson DR, Qiu J, Shewry SC, Fink DL, Petty S, Baker EN, Plaut AG, St Geme JW 3rd. Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol Microbiol. 2003 Feb;47(3):607-17. PMID:12535064
↑Mariller C, Hardiville S, Hoedt E, Huvent I, Pina-Canseco S, Pierce A. Delta-lactoferrin, an intracellular lactoferrin isoform that acts as a transcription factor. Biochem Cell Biol. 2012 Jun;90(3):307-19. doi: 10.1139/o11-070. Epub 2012 Feb 9. PMID:22320386 doi:http://dx.doi.org/10.1139/o11-070
↑Hendrixson DR, Qiu J, Shewry SC, Fink DL, Petty S, Baker EN, Plaut AG, St Geme JW 3rd. Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol Microbiol. 2003 Feb;47(3):607-17. PMID:12535064
↑Mariller C, Hardiville S, Hoedt E, Huvent I, Pina-Canseco S, Pierce A. Delta-lactoferrin, an intracellular lactoferrin isoform that acts as a transcription factor. Biochem Cell Biol. 2012 Jun;90(3):307-19. doi: 10.1139/o11-070. Epub 2012 Feb 9. PMID:22320386 doi:http://dx.doi.org/10.1139/o11-070
↑Hendrixson DR, Qiu J, Shewry SC, Fink DL, Petty S, Baker EN, Plaut AG, St Geme JW 3rd. Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol Microbiol. 2003 Feb;47(3):607-17. PMID:12535064
↑Mariller C, Hardiville S, Hoedt E, Huvent I, Pina-Canseco S, Pierce A. Delta-lactoferrin, an intracellular lactoferrin isoform that acts as a transcription factor. Biochem Cell Biol. 2012 Jun;90(3):307-19. doi: 10.1139/o11-070. Epub 2012 Feb 9. PMID:22320386 doi:http://dx.doi.org/10.1139/o11-070
↑Hendrixson DR, Qiu J, Shewry SC, Fink DL, Petty S, Baker EN, Plaut AG, St Geme JW 3rd. Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol Microbiol. 2003 Feb;47(3):607-17. PMID:12535064
↑Mariller C, Hardiville S, Hoedt E, Huvent I, Pina-Canseco S, Pierce A. Delta-lactoferrin, an intracellular lactoferrin isoform that acts as a transcription factor. Biochem Cell Biol. 2012 Jun;90(3):307-19. doi: 10.1139/o11-070. Epub 2012 Feb 9. PMID:22320386 doi:http://dx.doi.org/10.1139/o11-070
↑Hendrixson DR, Qiu J, Shewry SC, Fink DL, Petty S, Baker EN, Plaut AG, St Geme JW 3rd. Human milk lactoferrin is a serine protease that cleaves Haemophilus surface proteins at arginine-rich sites. Mol Microbiol. 2003 Feb;47(3):607-17. PMID:12535064
↑Mariller C, Hardiville S, Hoedt E, Huvent I, Pina-Canseco S, Pierce A. Delta-lactoferrin, an intracellular lactoferrin isoform that acts as a transcription factor. Biochem Cell Biol. 2012 Jun;90(3):307-19. doi: 10.1139/o11-070. Epub 2012 Feb 9. PMID:22320386 doi:http://dx.doi.org/10.1139/o11-070
↑Sun XL, Baker HM, Shewry SC, Jameson GB, Baker EN. Structure of recombinant human lactoferrin expressed in Aspergillus awamori. Acta Crystallogr D Biol Crystallogr. 1999 Feb;55(Pt 2):403-7. PMID:10089347