1am7

From Proteopedia
Jump to navigation Jump to search

Lysozyme from bacteriophage lambdaLysozyme from bacteriophage lambda

Structural highlights

1am7 is a 3 chain structure with sequence from Escherichia virus Lambda. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.3Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

ENLYS_LAMBD Endolysin with transglycosylase activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[HAMAP-Rule:MF_04109][1] [2]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Like other lysozymes, the bacteriophage lambda lysozyme is involved in the digestion of bacterial walls. This enzyme is remarkable in that its mechanism of action is different from the classical lysozyme's mechanism. From the point of view of protein evolution, it shows features of lysozymes from different classes. The crystal structure of the enzyme in which all tryptophan residues have been replaced by aza-tryptophan has been solved by X-ray crystallography at 2.3 A using a combination of multiple isomorphous replacement, non-crystallographic symmetry averaging and density modification techniques. There are three molecules in the asymmetric unit. The characteristic structural elements of lysozymes are conserved: each molecule is organized in two domains connected by a helix and the essential catalytic residue (Glu19) is located in the depth of a cleft between the two domains. This cleft shows an open conformation in two of the independent molecules, while access to the cavity is much more restricted in the last one. A structural alignment with T4 lysozyme and hen egg white lysozyme allows us to superpose about 60 C alpha atoms with a rms distance close to 2 A. The best alignments concern the helix preceding the catalytic residue, some parts of the beta sheets and the helix joining the two domains. The results of sequence alignments with the V and C lysozymes, in which weak local similarities had been detected, are compared with the structural results.

Crystal structure of the lysozyme from bacteriophage lambda and its relationship with V and C-type lysozymes.,Evrard C, Fastrez J, Declercq JP J Mol Biol. 1998 Feb 13;276(1):151-64. PMID:9514719[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Evrard C, Fastrez J, Soumillion P. Histidine modification and mutagenesis point to the involvement of a large conformational change in the mechanism of action of phage lambda lysozyme. FEBS Lett. 1999 Nov 5;460(3):442-6. PMID:10556513 doi:10.1016/s0014-5793(99)01395-2
  2. Young R. Phage lysis: do we have the hole story yet? Curr Opin Microbiol. 2013 Dec;16(6):790-7. PMID:24113139 doi:10.1016/j.mib.2013.08.008
  3. Evrard C, Fastrez J, Declercq JP. Crystal structure of the lysozyme from bacteriophage lambda and its relationship with V and C-type lysozymes. J Mol Biol. 1998 Feb 13;276(1):151-64. PMID:9514719 doi:10.1006/jmbi.1997.1499

1am7, resolution 2.30Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA