1ajr

From Proteopedia
Jump to navigation Jump to search

REFINEMENT AND COMPARISON OF THE CRYSTAL STRUCTURES OF PIG CYTOSOLIC ASPARTATE AMINOTRANSFERASE AND ITS COMPLEX WITH 2-METHYLASPARTATEREFINEMENT AND COMPARISON OF THE CRYSTAL STRUCTURES OF PIG CYTOSOLIC ASPARTATE AMINOTRANSFERASE AND ITS COMPLEX WITH 2-METHYLASPARTATE

Structural highlights

1ajr is a 2 chain structure with sequence from Sus scrofa. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.74Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

AATC_PIG Plays a key role in amino acid metabolism.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Two high resolution crystal structures of cytosolic aspartate aminotransferase from pig heart provide additional insights into the stereochemical mechanism for ligand-induced conformational changes in this enzyme. Structures of the homodimeric native structure and its complex with the substrate analog 2-methylaspartate have been refined, respectively, with 1.74-A x-ray diffraction data to an R value of 0.170, and with 1.6-A data to an R value of 0.173. In the presence of 2-methylaspartate, one of the subunits (subunit 1) shows a ligand-induced conformational change that involves a large movement of the small domain (residues 12-49 and 327-412) to produce a "closed" conformation. No such transition is observed in the other subunit (subunit 2), because crystal lattice contacts lock it in an "open" conformation like that adopted by subunit 1 in the absence of substrate. By comparing the open and closed forms of cAspAT, we propose a stereochemical mechanism for the open-to-closed transition that involves the electrostatic neutralization of two active site arginine residues by the negative charges of the incoming substrate, a large change in the backbone (phi,psi) conformational angles of two key glycine residues, and the entropy-driven burial of a stretch of hydrophobic residues on the N-terminal helix. The calculated free energy for the burial of this "hydrophobic plug" appears to be sufficient to serve as the driving force for domain closure.

Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate.,Rhee S, Silva MM, Hyde CC, Rogers PH, Metzler CM, Metzler DE, Arnone A J Biol Chem. 1997 Jul 11;272(28):17293-302. PMID:9211866[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Rhee S, Silva MM, Hyde CC, Rogers PH, Metzler CM, Metzler DE, Arnone A. Refinement and comparisons of the crystal structures of pig cytosolic aspartate aminotransferase and its complex with 2-methylaspartate. J Biol Chem. 1997 Jul 11;272(28):17293-302. PMID:9211866

1ajr, resolution 1.74Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA