1adr

From Proteopedia
Jump to navigation Jump to search

DETERMINATION OF THE NUCLEAR MAGNETIC RESONANCE STRUCTURE OF THE DNA-BINDING DOMAIN OF THE P22 C2 REPRESSOR (1-76) IN SOLUTION AND COMPARISON WITH THE DNA-BINDING DOMAIN OF THE 434 REPRESSORDETERMINATION OF THE NUCLEAR MAGNETIC RESONANCE STRUCTURE OF THE DNA-BINDING DOMAIN OF THE P22 C2 REPRESSOR (1-76) IN SOLUTION AND COMPARISON WITH THE DNA-BINDING DOMAIN OF THE 434 REPRESSOR

Structural highlights

1adr is a 1 chain structure with sequence from Salmonella virus P22. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

RPC2_BPP22 This protein allows the phage to reside inactively in the chromosome of its host bacterium. This lysogenic state is maintained by binding of regulatory protein C2 to the OR and OL operators, preventing transcription of proteins necessary for lytic development.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The solution structure of the N-terminal DNA-binding domain of the P22 c2 repressor (residues 1 to 76) was determined by nuclear magnetic resonance (NMR) spectroscopy. The structure determination was based on nearly complete sequence-specific resonance assignments for 1H, 13C and 15N, and tables of the chemical shifts for all three nuclei are included here. A group of 20 conformers was calculated from the NMR constraints using the program DIANA, and energy-minimized using an implementation of the AMBER force field in the program OPAL. The core of the protein formed by residues 5 to 68 is structurally well defined, with an average of 0.7 A for the root-mean-square deviations calculated for the backbone atoms of the individual conformers relative to the mean coordinates. The N-terminal tetrapeptide segment and the C-terminal octapeptide segment are flexibly disordered. The molecular architecture includes five alpha-helical segments with residues 6 to 17, 21 to 28, 32 to 39, 47 to 57 and 61 to 65. The length and relative orientation of these helices are closely similar to the arrangement of corresponding regular secondary structures in the DNA-binding domain of the 434 repressor, with the sole exception of the fourth helix, which is one turn longer at its amino-terminal end than the corresponding helix in the 434 repressor. This extension of the fourth helix implies that the DNA-binding mode of the P22 c2 repressor must be somewhat different from that observed for the 434 repressor. Exact superposition of two P22 c2 repressor DNA-binding domains for best fit of corresponding polypeptide backbone atoms onto the two 434 repressor DNA-binding domains in the crystal structure of the 434 repressor-DNA complex would result in a model of the P22 c2 repressor-DNA complex which could not accommodate the fourth helices because of steric overlap.

Determination of the nuclear magnetic resonance structure of the DNA-binding domain of the P22 c2 repressor (1 to 76) in solution and comparison with the DNA-binding domain of the 434 repressor.,Sevilla-Sierra P, Otting G, Wuthrich K J Mol Biol. 1994 Jan 21;235(3):1003-20. PMID:8289306[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Sevilla-Sierra P, Otting G, Wuthrich K. Determination of the nuclear magnetic resonance structure of the DNA-binding domain of the P22 c2 repressor (1 to 76) in solution and comparison with the DNA-binding domain of the 434 repressor. J Mol Biol. 1994 Jan 21;235(3):1003-20. PMID:8289306 doi:http://dx.doi.org/10.1006/jmbi.1994.1053
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA