1a6b

From Proteopedia
Jump to navigation Jump to search

NMR STRUCTURE OF THE COMPLEX BETWEEN THE ZINC FINGER PROTEIN NCP10 OF MOLONEY MURINE LEUKEMIA VIRUS AND A SEQUENCE OF THE PSI-PACKAGING DOMAIN OF HIV-1, 20 STRUCTURESNMR STRUCTURE OF THE COMPLEX BETWEEN THE ZINC FINGER PROTEIN NCP10 OF MOLONEY MURINE LEUKEMIA VIRUS AND A SEQUENCE OF THE PSI-PACKAGING DOMAIN OF HIV-1, 20 STRUCTURES

Structural highlights

1a6b is a 2 chain structure. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

GAG_MLVMS Gag polyprotein plays a role in budding and is processed by the viral protease during virion maturation outside the cell. During budding, it recruits, in a PPXY-dependent or independent manner, Nedd4-like ubiquitin ligases that conjugate ubiquitin molecules to Gag, or to Gag binding host factors. Interaction with HECT ubiquitin ligases probably link the viral protein to the host ESCRT pathway and facilitate release.[1] Matrix protein p15 targets Gag and gag-pol polyproteins to the plasma membrane via a multipartite membrane binding signal, that includes its myristoylated N-terminus. Also mediates nuclear localization of the preintegration complex (By similarity).[2] Capsid protein p30 forms the spherical core of the virion that encapsulates the genomic RNA-nucleocapsid complex (By similarity).[3] Nucleocapsid protein p10 is involved in the packaging and encapsidation of two copies of the genome. Binds with high affinity to conserved UCUG elements within the packaging signal, located near the 5'-end of the genome. This binding is dependent on genome dimerization.[4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

The structure of the 56 amino acid nucleocapsid protein NCp10 of retrovirus MoMuLV, which contains a single CX(2)CX(4)HX(4)C-type zinc finger, has been determined previously by NMR. The important role of NCp10 (or NCp7 for HIV-1) in the retroviral life cycle seems mainly related to their preferential binding to single-stranded nucleic acids. We report here the structure of the complex formed between the biologically active (14-53)NCp10 and the oligonucleotide d(ACGCC) in aqueous solution determined by 2D (1)H NMR based methods. The aromatic residue Trp(35) of NCp10 directs nucleic acid complexation as shown by its complete fluorescence quenching upon addition of d(ACGCC). (1)H and (31)P NMR studies support the insertion of Trp(35) between the G(3) and C(4) bases. A total of 577 NOE distance restraints, of which 40 were intermolecular, were used for the structure determination. The zinc finger provides a well-defined surface for the binding of d(ACGCC) through hydrophobic interactions and tryptophan stacking on the guanine. This latter interaction was also observed in the NMR-derived structures of the complexes between NCp7, which contains two successive zinc fingers, and single-stranded DNA and RNA, supporting the proposal for a major role played by aromatic residues of NCp proteins in nucleic acid recognition. Upon binding to the nucleotide a new loop in NCp10 that participates in the intermolecular interaction is formed. Additional interactions provided by positively charged residues surrounding the zinc finger appear necessary for tight binding. The structure of the complex NCp10-d(ACGCC) gives a structural explanation for the loss of virus infectivity following point mutations in the finger domain.

NMR structure of the complex between the zinc finger protein NCp10 of Moloney murine leukemia virus and the single-stranded pentanucleotide d(ACGCC): comparison with HIV-NCp7 complexes.,Schuler W, Dong C, Wecker K, Roques BP Biochemistry. 1999 Oct 5;38(40):12984-94. PMID:10529168[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Jadwin JA, Rudd V, Sette P, Challa S, Bouamr F. Late domain-independent rescue of a release-deficient Moloney murine leukemia virus by the ubiquitin ligase itch. J Virol. 2010 Jan;84(2):704-15. doi: 10.1128/JVI.01319-09. Epub 2009 Oct 28. PMID:19864377 doi:http://dx.doi.org/10.1128/JVI.01319-09
  2. Jadwin JA, Rudd V, Sette P, Challa S, Bouamr F. Late domain-independent rescue of a release-deficient Moloney murine leukemia virus by the ubiquitin ligase itch. J Virol. 2010 Jan;84(2):704-15. doi: 10.1128/JVI.01319-09. Epub 2009 Oct 28. PMID:19864377 doi:http://dx.doi.org/10.1128/JVI.01319-09
  3. Jadwin JA, Rudd V, Sette P, Challa S, Bouamr F. Late domain-independent rescue of a release-deficient Moloney murine leukemia virus by the ubiquitin ligase itch. J Virol. 2010 Jan;84(2):704-15. doi: 10.1128/JVI.01319-09. Epub 2009 Oct 28. PMID:19864377 doi:http://dx.doi.org/10.1128/JVI.01319-09
  4. Jadwin JA, Rudd V, Sette P, Challa S, Bouamr F. Late domain-independent rescue of a release-deficient Moloney murine leukemia virus by the ubiquitin ligase itch. J Virol. 2010 Jan;84(2):704-15. doi: 10.1128/JVI.01319-09. Epub 2009 Oct 28. PMID:19864377 doi:http://dx.doi.org/10.1128/JVI.01319-09
  5. Schuler W, Dong C, Wecker K, Roques BP. NMR structure of the complex between the zinc finger protein NCp10 of Moloney murine leukemia virus and the single-stranded pentanucleotide d(ACGCC): comparison with HIV-NCp7 complexes. Biochemistry. 1999 Oct 5;38(40):12984-94. PMID:10529168
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA