1hrd
GLUTAMATE DEHYDROGENASE
|
OverviewOverview
BACKGROUND: The hyperthermophile Pyrococcus furiosus is one of the most, thermostable organisms known, with an optimum growth temperature of 100, degrees C. The proteins from this organism display extreme, thermostability. We have undertaken the structure determination of, glutamate dehydrogenase from P. furiosus in order to gain further insights, into the relationship between molecular structure and thermal stability., RESULTS: The structure of P. furiosus glutamate dehydrogenase, a, homohexameric enzyme, has been determined at 2.2 A resolution and compared, with the structure of glutamate dehydrogenase from the mesophile, Clostridium symbiosum. CONCLUSIONS: Comparison of the structures of these, two enzymes has revealed one major difference: the structure of the, hyperthermophilic enzyme contains a striking series of ion-pair networks, on the surface of the protein subunits and buried at both interdomain and, intersubunit interfaces. We propose that the formation of such extended, networks may represent a major stabilizing feature associated with the, adaptation of enzymes to extreme temperatures.
About this StructureAbout this Structure
1HRD is a Single protein structure of sequence from Clostridium symbiosum. Active as Glutamate dehydrogenase, with EC number 1.4.1.2 Full crystallographic information is available from OCA.
ReferenceReference
The structure of Pyrococcus furiosus glutamate dehydrogenase reveals a key role for ion-pair networks in maintaining enzyme stability at extreme temperatures., Yip KS, Stillman TJ, Britton KL, Artymiuk PJ, Baker PJ, Sedelnikova SE, Engel PC, Pasquo A, Chiaraluce R, Consalvi V, Structure. 1995 Nov 15;3(11):1147-58. PMID:8591026
Page seeded by OCA on Tue Nov 20 16:46:50 2007