Template:STRUCTURE 2hnf

File:2hnf.gif

Structure of a Hyper-cleavable Monomeric Fragment of Phage lambda Repressor Containing the Cleavage Site Region


OverviewOverview

The key event in the switch from lysogenic to lytic growth of phage lambda is the self-cleavage of lambda repressor, which is induced by the formation of a RecA-ssDNA-ATP filament at a site of DNA damage. Lambda repressor cleaves itself at the peptide bond between Ala111 and Gly112, but only when bound as a monomer to the RecA-ssDNA-ATP filament. Here we have designed a hyper-cleavable fragment of lambda repressor containing the hinge and C-terminal domain (residues 101-229), in which the monomer-monomer interface is disrupted by two point mutations and a deletion of seven residues at the C terminus. This fragment crystallizes as a monomer and its structure has been determined to 1.8 A resolution. The hinge region, which bears the cleavage site, is folded over the active site of the C-terminal oligomerization domain (CTD) but with the cleavage site flipped out and exposed to solvent. Thus, the structure represents a non-cleavable conformation of the repressor, but one that is poised for cleavage after modest rearrangements that are presumably stabilized by binding to RecA. The structure provides a unique snapshot of lambda repressor in a conformation that sheds light on how its self-cleavage is tempered in the absence of RecA, as well as a framework for interpreting previous genetic and biochemical data concerning the RecA-mediated cleavage reaction.

About this StructureAbout this Structure

2HNF is a Single protein structure of sequence from Escherichia coli. Full crystallographic information is available from OCA.

ReferenceReference

Structure of a hyper-cleavable monomeric fragment of phage lambda repressor containing the cleavage site region., Ndjonka D, Bell CE, J Mol Biol. 2006 Sep 22;362(3):479-89. Epub 2006 Jul 15. PMID:16934834 Page seeded by OCA on Sun May 4 06:29:16 2008

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA