2o3u
|
Structural Basis for Formation and Hydrolysis of Calcium Messenger Cyclic ADP-ribose by Human CD38
OverviewOverview
Human CD38 is a multifunctional ectoenzyme responsible for catalyzing the, conversions from nicotinamide adenine dinucleotide (NAD) to cyclic, ADP-ribose (cADPR) and from cADPR to ADP-ribose (ADPR). Both cADPR and, ADPR are calcium messengers that can mobilize intracellular stores and, activate influx as well. In this study, we determined three crystal, structures of the human CD38 enzymatic domain complexed with cADPR at, 1.5-A resolution, with its analog, cyclic GDP-ribose (cGDPR) (1.68 A) and, with NGD (2.1 A) a substrate analog of NAD. The results indicate that the, binding of cADPR or cGDPR to the active site induces structural, rearrangements in the dipeptide Glu(146)-Asp(147) by as much as 2.7 A), providing the first direct evidence of a conformational change at the, active site during catalysis. In addition, Glu(226) is shown to be, critical not only in catalysis but also in positioning of cADPR at the, catalytic site through strong hydrogen bonding interactions. Structural, details obtained from these complexes provide a step-by-step description, of the catalytic processes in the synthesis and hydrolysis of cADPR.
About this StructureAbout this Structure
2O3U is a Single protein structure of sequence from Homo sapiens with NGD as ligand. Active as NAD(+) nucleosidase, with EC number 3.2.2.5 Full crystallographic information is available from OCA.
ReferenceReference
Structural basis for formation and hydrolysis of the calcium messenger cyclic ADP-ribose by human CD38., Liu Q, Kriksunov IA, Graeff R, Lee HC, Hao Q, J Biol Chem. 2007 Feb 23;282(8):5853-61. Epub 2006 Dec 20. PMID:17182614
Page seeded by OCA on Mon Nov 12 23:06:25 2007