2hhb
|
THE CRYSTAL STRUCTURE OF HUMAN DEOXYHAEMOGLOBIN AT 1.74 ANGSTROMS RESOLUTION
OverviewOverview
The structure of human deoxyhaemoglobin was refined at 1.74 A resolution, using data collected on film at room temperature from a synchrotron X-ray, source. The crystallographic R-factor is 16.0%. The estimated error in, atomic positions is 0.1 A overall, 0.14 A for main-chain atoms of internal, segments, and 0.05 A for the iron atoms. The effects of intermolecular, contacts on the structure were investigated; such contacts cause only, highly localized distortions, as judged from the degree of molecular, asymmetry that they induce. The geometry of the iron-nitrogen complex, closely resembles that of the deoxymyoglobin structure of Takano (1977), and of the 5-co-ordinated model compounds of Hoard (1975) and Jameson et, al. (1980). The distance of the iron from the mean plane of N(porphyrin), is 0.40(5) A and 0.36(5) A, respectively, at the alpha and beta haems, in, contrast to the corresponding distance of +0.12(8) A and -0.11(8) A in, oxyhaemoglobin ( Shaanan , 1983); the Fe-N epsilon (F8) bond length is, 2.12(4) A and the Fe-N(porphyrin) bond length is 2.06(2) A; the last is, also in good agreement with extended X-ray fluorescence spectroscopy, measurements on deoxyhaemoglobin ( Eisenberger et al., 1978; Perutz et, al., 1982). The haems are domed toward the proximal side; the separation, between the mean planes of N(porphyrin) and C(porphyrin) being 0.16(6) A, and 0.10(6) A, respectively at the alpha and beta haems. At the alpha, haems, the normals to the mean pyrrole planes are tilted uniformly toward, the haem centre, by about three degrees relative to the haem normal, and, there is a folding of about four degrees of the haem about an axis running, between the methene carbons that are between the pyrrole rings bearing, like-type side-chains. At the beta haems, there is no such folding, and, only pyrroles II and IV (those eclipsed by His F8) are appreciably tilted, by about eight degrees. The independence of these parameters from, restraints imposed on the model was verified by unrestrained refinement of, the entire molecule starting from a structure with modified haem geometry.
DiseaseDisease
Known diseases associated with this structure: Erythremias, alpha- OMIM:[141800], Erythremias, beta- OMIM:[141900], Erythrocytosis OMIM:[141850], HPFH, deletion type OMIM:[141900], Heinz body anemia OMIM:[141850], Heinz body anemias, alpha- OMIM:[141800], Heinz body anemias, beta- OMIM:[141900], Hemoglobin H disease OMIM:[141850], Hypochromic microcytic anemia OMIM:[141850], Methemoglobinemias, alpha- OMIM:[141800], Methemoglobinemias, beta- OMIM:[141900], Sickle cell anemia OMIM:[141900], Thalassemia, alpha- OMIM:[141850], Thalassemia-beta, dominant inclusion-body OMIM:[141900], Thalassemias, alpha- OMIM:[141800], Thalassemias, beta- OMIM:[141900]
About this StructureAbout this Structure
2HHB is a Protein complex structure of sequences from Homo sapiens with PO4 and HEM as ligands. The following page contains interesting information on the relation of 2HHB with [Hemoglobin]. Full crystallographic information is available from OCA.
ReferenceReference
The crystal structure of human deoxyhaemoglobin at 1.74 A resolution., Fermi G, Perutz MF, Shaanan B, Fourme R, J Mol Biol. 1984 May 15;175(2):159-74. PMID:6726807
Page seeded by OCA on Mon Nov 12 22:32:35 2007