8udy

Revision as of 09:10, 15 January 2025 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Crystal structure of SARS-CoV-2 3CL protease with inhibitor 25Crystal structure of SARS-CoV-2 3CL protease with inhibitor 25

Structural highlights

8udy is a 1 chain structure with sequence from Severe acute respiratory syndrome coronavirus 2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.91Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

R1AB_SARS2 Multifunctional protein involved in the transcription and replication of viral RNAs. Contains the proteinases responsible for the cleavages of the polyprotein.[UniProtKB:P0C6X7] Inhibits host translation by interacting with the 40S ribosomal subunit. The nsp1-40S ribosome complex further induces an endonucleolytic cleavage near the 5'UTR of host mRNAs, targeting them for degradation. Viral mRNAs are not susceptible to nsp1-mediated endonucleolytic RNA cleavage thanks to the presence of a 5'-end leader sequence and are therefore protected from degradation. By suppressing host gene expression, nsp1 facilitates efficient viral gene expression in infected cells and evasion from host immune response.[UniProtKB:P0C6X7] May play a role in the modulation of host cell survival signaling pathway by interacting with host PHB and PHB2. Indeed, these two proteins play a role in maintaining the functional integrity of the mitochondria and protecting cells from various stresses.[UniProtKB:P0C6X7] Responsible for the cleavages located at the N-terminus of the replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Participates together with nsp4 in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF3. Prevents also host NF-kappa-B signaling.[UniProtKB:P0C6X7] Participates in the assembly of virally-induced cytoplasmic double-membrane vesicles necessary for viral replication.[UniProtKB:P0C6X7] Cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN] (PubMed:32198291). Also able to bind an ADP-ribose-1-phosphate (ADRP).[UniProtKB:P0C6X7][1] Plays a role in the initial induction of autophagosomes from host reticulum endoplasmic. Later, limits the expansion of these phagosomes that are no longer able to deliver viral components to lysosomes.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp8 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] Forms a hexadecamer with nsp7 (8 subunits of each) that may participate in viral replication by acting as a primase. Alternatively, may synthesize substantially longer products than oligonucleotide primers.[UniProtKB:P0C6X7] May participate in viral replication by acting as a ssRNA-binding protein.[UniProtKB:P0C6X7] Plays a pivotal role in viral transcription by stimulating both nsp14 3'-5' exoribonuclease and nsp16 2'-O-methyltransferase activities. Therefore plays an essential role in viral mRNAs cap methylation.[UniProtKB:P0C6X7] Responsible for replication and transcription of the viral RNA genome.[UniProtKB:P0C6X7] Multi-functional protein with a zinc-binding domain in N-terminus displaying RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Activity of helicase is dependent on magnesium.[UniProtKB:P0C6X7] Enzyme possessing two different activities: an exoribonuclease activity acting on both ssRNA and dsRNA in a 3' to 5' direction and a N7-guanine methyltransferase activity. Acts as a proofreading exoribonuclease for RNA replication, thereby lowering The sensitivity of the virus to RNA mutagens.[UniProtKB:P0C6X7] Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond.[UniProtKB:P0C6X7] Methyltransferase that mediates mRNA cap 2'-O-ribose methylation to the 5'-cap structure of viral mRNAs. N7-methyl guanosine cap is a prerequisite for binding of nsp16. Therefore plays an essential role in viral mRNAs cap methylation which is essential to evade immune system.[UniProtKB:P0C6X7]

Publication Abstract from PubMed

Variants of SARS-CoV-2 have continued to emerge across the world and cause hundreds of deaths each week. Due to the limited efficacy of vaccines against SARS-CoV-2 and resistance to current therapies, additional anti-viral therapeutics with pan-coronavirus activity are of high interest. Here, we screen 2.8 billion compounds from a DNA-encoded chemical library and identify small molecules that are non-covalent inhibitors targeting the conserved 3CL protease of SARS-CoV-2 and other coronaviruses. We perform structure-based optimization, leading to the creation of a series of potent, non-covalent SARS-CoV-2 3CL protease inhibitors, for coronavirus infections. To characterize their binding mechanism to the 3CL protease, we determine 16 co-crystal structures and find that optimized inhibitors specifically interact with both protomers of the native homodimer of 3CL protease. Since 3CL protease is catalytically competent only in the dimeric state, these data provide insight into the design of drug-like inhibitors targeting the native homodimer state. With a binding mode different from the covalent 3CL inhibitor nirmatrelvir, the protease inhibitor in the COVID drug Paxlovid, these compounds may overcome resistance reported for nirmatrelvir and complement its clinical utility.

Development of small molecule non-covalent coronavirus 3CL protease inhibitors from DNA-encoded chemical library screening.,Liu H, Zask A, Forouhar F, Iketani S, Williams A, Vaz DR, Habashi D, Choi K, Resnick SJ, Hong SJ, Lovett DH, Bai T, Chavez A, Ho DD, Stockwell BR Nat Commun. 2025 Jan 2;16(1):152. doi: 10.1038/s41467-024-55421-5. PMID:39747827[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Zhang L, Lin D, Sun X, Curth U, Drosten C, Sauerhering L, Becker S, Rox K, Hilgenfeld R. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science. 2020 Mar 20. pii: science.abb3405. doi: 10.1126/science.abb3405. PMID:32198291 doi:http://dx.doi.org/10.1126/science.abb3405
  2. Liu H, Zask A, Forouhar F, Iketani S, Williams A, Vaz DR, Habashi D, Choi K, Resnick SJ, Hong SJ, Lovett DH, Bai T, Chavez A, Ho DD, Stockwell BR. Development of small molecule non-covalent coronavirus 3CL protease inhibitors from DNA-encoded chemical library screening. Nat Commun. 2025 Jan 2;16(1):152. PMID:39747827 doi:10.1038/s41467-024-55421-5

8udy, resolution 1.91Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA