8fyz
Crystal structure of human PARP1 ART domain bound to inhibitor UKTT10 (compound 13)Crystal structure of human PARP1 ART domain bound to inhibitor UKTT10 (compound 13)
Structural highlights
FunctionPARP1_HUMAN Involved in the base excision repair (BER) pathway, by catalyzing the poly(ADP-ribosyl)ation of a limited number of acceptor proteins involved in chromatin architecture and in DNA metabolism. This modification follows DNA damages and appears as an obligatory step in a detection/signaling pathway leading to the reparation of DNA strand breaks. Mediates the poly(ADP-ribosyl)ation of APLF and CHFR. Positively regulates the transcription of MTUS1 and negatively regulates the transcription of MTUS2/TIP150. With EEF1A1 and TXK, forms a complex that acts as a T-helper 1 (Th1) cell-specific transcription factor and binds the promoter of IFN-gamma to directly regulate its transcription, and is thus involved importantly in Th1 cytokine production.[1] [2] [3] [4] Publication Abstract from PubMedCatalytic poly(ADP-ribose) production by PARP1 is allosterically activated through interaction with DNA breaks, and PARP inhibitor compounds have the potential to influence PARP1 allostery in addition to preventing catalytic activity. Using the benzimidazole-4-carboxamide pharmacophore present in the first generation PARP1 inhibitor veliparib, a series of 11 derivatives was designed, synthesized, and evaluated as allosteric PARP1 inhibitors, with the premise that bulky substituents would engage the regulatory helical domain (HD) and thereby promote PARP1 retention on DNA breaks. We found that core scaffold modifications could indeed increase PARP1 affinity for DNA; however, the bulk of the modification alone was insufficient to trigger PARP1 allosteric retention on DNA breaks. Rather, compounds eliciting PARP1 retention on DNA breaks were found to be rigidly held in a position that interferes with a specific region of the HD domain, a region that is not targeted by current clinical PARP inhibitors. Collectively, these compounds highlight a unique way to trigger PARP1 retention on DNA breaks and open a path to unveil the pharmacological benefits of such inhibitors with novel properties. Novel modifications of PARP inhibitor veliparib increase PARP1 binding to DNA breaks.,Velagapudi UK, Rouleau-Turcotte E, Billur R, Shao X, Patil M, Black BE, Pascal JM, Talele TT Biochem J. 2024 Mar 20;481(6):437-460. doi: 10.1042/BCJ20230406. PMID:38372302[5] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. References
|
|