8cs0

From Proteopedia
Revision as of 09:24, 4 December 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal structure of alien DNA CTSZZPBSBSZPPBAG in a host-guest complex with the N-terminal fragment of Moloney murine leukemia virus reverse transcriptaseCrystal structure of alien DNA CTSZZPBSBSZPPBAG in a host-guest complex with the N-terminal fragment of Moloney murine leukemia virus reverse transcriptase

Structural highlights

8cs0 is a 3 chain structure with sequence from Moloney murine leukemia virus and Synthetic construct. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.65Å
Ligands:, , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

POL_MLVMS Gag-Pol polyprotein plays a role in budding and is processed by the viral protease during virion maturation outside the cell. During budding, it recruits, in a PPXY-dependent or independent manner, Nedd4-like ubiquitin ligases that conjugate ubiquitin molecules to Gag, or to Gag binding host factors. Interaction with HECT ubiquitin ligases probably link the viral protein to the host ESCRT pathway and facilitate release. Matrix protein p15 targets Gag and gag-pol polyproteins to the plasma membrane via a multipartite membrane binding signal, that includes its myristoylated N-terminus. Also mediates nuclear localization of the preintegration complex (By similarity). Capsid protein p30 forms the spherical core of the virion that encapsulates the genomic RNA-nucleocapsid complex (By similarity). Nucleocapsid protein p10 is involved in the packaging and encapsidation of two copies of the genome. Binds with high affinity to conserved UCUG elements within the packaging signal, located near the 5'-end of the genome. This binding is dependent on genome dimerization. The aspartyl protease mediates proteolytic cleavages of Gag and Gag-Pol polyproteins during or shortly after the release of the virion from the plasma membrane. Cleavages take place as an ordered, step-wise cascade to yield mature proteins. This process is called maturation. Displays maximal activity during the budding process just prior to particle release from the cell (By similarity). Reverse transcriptase/ribonuclease H (RT) is a multifunctional enzyme that converts the viral dimeric RNA genome into dsDNA in the cytoplasm, shortly after virus entry into the cell. This enzyme displays a DNA polymerase activity that can copy either DNA or RNA templates, and a ribonuclease H (RNase H) activity that cleaves the RNA strand of RNA-DNA heteroduplexes in a partially processive 3' to 5' endonucleasic mode. Conversion of viral genomic RNA into dsDNA requires many steps. A tRNA binds to the primer-binding site (PBS) situated at the 5' end of the viral RNA. RT uses the 3' end of the tRNA primer to perform a short round of RNA-dependent minus-strand DNA synthesis. The reading proceeds through the U5 region and ends after the repeated (R) region which is present at both ends of viral RNA. The portion of the RNA-DNA heteroduplex is digested by the RNase H, resulting in a ssDNA product attached to the tRNA primer. This ssDNA/tRNA hybridizes with the identical R region situated at the 3' end of viral RNA. This template exchange, known as minus-strand DNA strong stop transfer, can be either intra- or intermolecular. RT uses the 3' end of this newly synthesized short ssDNA to perform the RNA-dependent minus-strand DNA synthesis of the whole template. RNase H digests the RNA template except for a polypurine tract (PPT) situated at the 5' end of the genome. It is not clear if both polymerase and RNase H activities are simultaneous. RNase H probably can proceed both in a polymerase-dependent (RNA cut into small fragments by the same RT performing DNA synthesis) and a polymerase-independent mode (cleavage of remaining RNA fragments by free RTs). Secondly, RT performs DNA-directed plus-strand DNA synthesis using the PPT that has not been removed by RNase H as primers. PPT and tRNA primers are then removed by RNase H. The 3' and 5' ssDNA PBS regions hybridize to form a circular dsDNA intermediate. Strand displacement synthesis by RT to the PBS and PPT ends produces a blunt ended, linear dsDNA copy of the viral genome that includes long terminal repeats (LTRs) at both ends (By similarity). Integrase catalyzes viral DNA integration into the host chromosome, by performing a series of DNA cutting and joining reactions. This enzyme activity takes place after virion entry into a cell and reverse transcription of the RNA genome in dsDNA. The first step in the integration process is 3' processing. This step requires a complex comprising the viral genome, matrix protein and integrase. This complex is called the pre-integration complex (PIC). The integrase protein removes 2 nucleotides from each 3' end of the viral DNA, leaving recessed CA OH's at the 3' ends. In the second step that requires cell division, the PIC enters cell nucleus. In the third step, termed strand transfer, the integrase protein joins the previously processed 3' ends to the 5' ends of strands of target cellular DNA at the site of integration. The last step is viral DNA integration into host chromosome (By similarity).

Publication Abstract from PubMed

A fundamental property of DNA built from four informational nucleotide units (GCAT) is its ability to adopt different helical forms within the context of the Watson-Crick pair. Well-characterized examples include A-, B-, and Z-DNA. For this study, we created an isoinformational biomimetic polymer, built (like standard DNA) from four informational "letters", but with the building blocks being artificial. This ALternative Isoinformational ENgineered (ALIEN) DNA was hypothesized to support two nucleobase pairs, the P:Z pair matching 2-amino-imidazo-[1,2a]-1,3,5-triazin-[8H]-4-one with 6-amino-3-5-nitro-1H-pyridin-2-one and the B:S pair matching 6-amino-4-hydroxy-5-1H-purin-2-one with 3-methyl-6-amino-pyrimidin-2-one. We report two structures of ALIEN DNA duplexes at 1.2 A resolution and a third at 1.65 A. All of these are built from a single self-complementary sequence (5'-CTSZZPBSBSZPPBAG) that includes 12 consecutive ALIEN nucleotides. We characterized the helical, nucleobase pair, and dinucleotide step parameters of ALIEN DNA in these structures. In addition to showing that ALIEN pairs retain basic Watson-Crick pairing geometry, two of the ALIEN DNA structures are characterized as A-form DNA and one as B-form DNA. We identified parameters that map differences effecting the transition between the two helical forms; these same parameters distinguish helical forms of isoinformational natural DNA. Collectively, our analyses suggest that ALIEN DNA retains essential structural features of natural DNA, not only its information density and Watson-Crick pairing but also its ability to adopt two canonical forms.

Visualizing "Alternative Isoinformational Engineered" DNA in A- and B-Forms at High Resolution.,Hoshika S, Shukla MS, Benner SA, Georgiadis MM J Am Chem Soc. 2022 Aug 31;144(34):15603-15611. doi: 10.1021/jacs.2c05255. Epub , 2022 Aug 15. PMID:35969672[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Hoshika S, Shukla MS, Benner SA, Georgiadis MM. Visualizing "Alternative Isoinformational Engineered" DNA in A High Resolution. J Am Chem Soc. 2022 Aug 31;144(34):15603-15611. PMID:35969672 doi:10.1021/jacs.2c05255

8cs0, resolution 1.65Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA