7qus

Revision as of 16:56, 6 November 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

SARS-CoV-2 Spike, C3 symmetrySARS-CoV-2 Spike, C3 symmetry

Structural highlights

7qus is a 3 chain structure with sequence from Escherichia virus T4 and Severe acute respiratory syndrome coronavirus 2. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Electron Microscopy, Resolution 2.39Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

WAC_BPT4 Chaperone responsible for attachment of long tail fibers to virus particle. Forms the fibrous structure on the neck of the virion called whiskers. During phage assembly, 6 fibritin molecules attach to each virion neck through their N-terminal domains, to form a collar with six fibers ('whiskers').SPIKE_SARS2 attaches the virion to the cell membrane by interacting with host receptor, initiating the infection (By similarity). Binding to human ACE2 receptor and internalization of the virus into the endosomes of the host cell induces conformational changes in the Spike glycoprotein (PubMed:32142651, PubMed:32075877, PubMed:32155444). Uses also human TMPRSS2 for priming in human lung cells which is an essential step for viral entry (PubMed:32142651). Proteolysis by cathepsin CTSL may unmask the fusion peptide of S2 and activate membranes fusion within endosomes.[HAMAP-Rule:MF_04099][1] [2] [3] mediates fusion of the virion and cellular membranes by acting as a class I viral fusion protein. Under the current model, the protein has at least three conformational states: pre-fusion native state, pre-hairpin intermediate state, and post-fusion hairpin state. During viral and target cell membrane fusion, the coiled coil regions (heptad repeats) assume a trimer-of-hairpins structure, positioning the fusion peptide in close proximity to the C-terminal region of the ectodomain. The formation of this structure appears to drive apposition and subsequent fusion of viral and target cell membranes.[HAMAP-Rule:MF_04099] Acts as a viral fusion peptide which is unmasked following S2 cleavage occurring upon virus endocytosis.[HAMAP-Rule:MF_04099]

Publication Abstract from PubMed

Many pathogens exploit host cell-surface glycans. However, precise analyses of glycan ligands binding with heavily modified pathogen proteins can be confounded by overlapping sugar signals and/or compounded with known experimental constraints. Universal saturation transfer analysis (uSTA) builds on existing nuclear magnetic resonance spectroscopy to provide an automated workflow for quantitating protein-ligand interactions. uSTA reveals that early-pandemic, B-origin-lineage severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike trimer binds sialoside sugars in an "end-on" manner. uSTA-guided modeling and a high-resolution cryo-electron microscopy structure implicate the spike N-terminal domain (NTD) and confirm end-on binding. This finding rationalizes the effect of NTD mutations that abolish sugar binding in SARS-CoV-2 variants of concern. Together with genetic variance analyses in early pandemic patient cohorts, this binding implicates a sialylated polylactosamine motif found on tetraantennary N-linked glycoproteins deep in the human lung as potentially relevant to virulence and/or zoonosis.

Pathogen-sugar interactions revealed by universal saturation transfer analysis.,Buchanan CJ, Gaunt B, Harrison PJ, Yang Y, Liu J, Khan A, Giltrap AM, Le Bas A, Ward PN, Gupta K, Dumoux M, Tan TK, Schimaski L, Daga S, Picchiotti N, Baldassarri M, Benetti E, Fallerini C, Fava F, Giliberti A, Koukos PI, Davy MJ, Lakshminarayanan A, Xue X, Papadakis G, Deimel LP, Casablancas-Antras V, Claridge TDW, Bonvin AMJJ, Sattentau QJ, Furini S, Gori M, Huo J, Owens RJ, Schaffitzel C, Berger I, Renieri A, Naismith JH, Baldwin AJ, Davis BG Science. 2022 Jul 22;377(6604):eabm3125. doi: 10.1126/science.abm3125. Epub 2022 , Jul 22. PMID:35737812[4]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020 Feb 19. pii: science.abb2507. doi: 10.1126/science.abb2507. PMID:32075877 doi:http://dx.doi.org/10.1126/science.abb2507
  2. Hoffmann M, Kleine-Weber H, Schroeder S, Kruger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Muller MA, Drosten C, Pohlmann S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271-280.e8. doi: 10.1016/j.cell.2020.02.052. Epub 2020, Mar 5. PMID:32142651 doi:http://dx.doi.org/10.1016/j.cell.2020.02.052
  3. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell. 2020 Mar 6. pii: S0092-8674(20)30262-2. doi: 10.1016/j.cell.2020.02.058. PMID:32155444 doi:http://dx.doi.org/10.1016/j.cell.2020.02.058
  4. Buchanan CJ, Gaunt B, Harrison PJ, Yang Y, Liu J, Khan A, Giltrap AM, Le Bas A, Ward PN, Gupta K, Dumoux M, Tan TK, Schimaski L, Daga S, Picchiotti N, Baldassarri M, Benetti E, Fallerini C, Fava F, Giliberti A, Koukos PI, Davy MJ, Lakshminarayanan A, Xue X, Papadakis G, Deimel LP, Casablancas-Antras V, Claridge TDW, Bonvin AMJJ, Sattentau QJ, Furini S, Gori M, Huo J, Owens RJ, Schaffitzel C, Berger I, Renieri A, Naismith JH, Baldwin AJ, Davis BG. Pathogen-sugar interactions revealed by universal saturation transfer analysis. Science. 2022 Jun 23:eabm3125. doi: 10.1126/science.abm3125. PMID:35737812 doi:http://dx.doi.org/10.1126/science.abm3125

7qus, resolution 2.39Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA