6gff

From Proteopedia
Revision as of 15:41, 6 November 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Structure of GARP (LRRC32) in complex with latent TGF-beta1 and MHG-8 FabStructure of GARP (LRRC32) in complex with latent TGF-beta1 and MHG-8 Fab

Structural highlights

6gff is a 14 chain structure with sequence from Homo sapiens and Mus musculus. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.1Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

TGFB1_HUMAN Defects in TGFB1 are the cause of Camurati-Engelmann disease (CE) [MIM:131300; also known as progressive diaphyseal dysplasia 1 (DPD1). CE is an autosomal dominant disorder characterized by hyperostosis and sclerosis of the diaphyses of long bones. The disease typically presents in early childhood with pain, muscular weakness and waddling gait, and in some cases other features such as exophthalmos, facial paralysis, hearing difficulties and loss of vision.[1] [2] [3] [4] [5]

Function

TGFB1_HUMAN Multifunctional protein that controls proliferation, differentiation and other functions in many cell types. Many cells synthesize TGFB1 and have specific receptors for it. It positively and negatively regulates many other growth factors. It plays an important role in bone remodeling as it is a potent stimulator of osteoblastic bone formation, causing chemotaxis, proliferation and differentiation in committed osteoblasts.

Publication Abstract from PubMed

Transforming growth factor-beta1 (TGF-beta1) is one of very few cytokines produced in a latent form, requiring activation to exert any of its vastly diverse effects on development, immunity, and cancer. Regulatory T cells (Tregs) suppress immune cells within close proximity by activating latent TGF-beta1 presented by GARP to integrin alphaVbeta8 on their surface. We solved the crystal structure of GARP:latent TGF-beta1 bound to an antibody that stabilizes the complex and blocks release of active TGF-beta1. This reveals how GARP exploits an unusual medley of interactions, including fold complementation by the N terminus of TGF-beta1, to chaperone and orient the cytokine for binding and activation by alphaVbeta8. Thus, this work further elucidates the mechanism of antibody-mediated blockade of TGF-beta1 activation and immunosuppression by Tregs.

Structural basis of latent TGF-beta1 presentation and activation by GARP on human regulatory T cells.,Lienart S, Merceron R, Vanderaa C, Lambert F, Colau D, Stockis J, van der Woning B, De Haard H, Saunders M, Coulie PG, Savvides SN, Lucas S Science. 2018 Oct 25. pii: science.aau2909. doi: 10.1126/science.aau2909. PMID:30361387[6]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Kinoshita A, Saito T, Tomita H, Makita Y, Yoshida K, Ghadami M, Yamada K, Kondo S, Ikegawa S, Nishimura G, Fukushima Y, Nakagomi T, Saito H, Sugimoto T, Kamegaya M, Hisa K, Murray JC, Taniguchi N, Niikawa N, Yoshiura K. Domain-specific mutations in TGFB1 result in Camurati-Engelmann disease. Nat Genet. 2000 Sep;26(1):19-20. PMID:10973241 doi:10.1038/79128
  2. Janssens K, Gershoni-Baruch R, Guanabens N, Migone N, Ralston S, Bonduelle M, Lissens W, Van Maldergem L, Vanhoenacker F, Verbruggen L, Van Hul W. Mutations in the gene encoding the latency-associated peptide of TGF-beta 1 cause Camurati-Engelmann disease. Nat Genet. 2000 Nov;26(3):273-5. PMID:11062463 doi:10.1038/81563
  3. Janssens K, ten Dijke P, Ralston SH, Bergmann C, Van Hul W. Transforming growth factor-beta 1 mutations in Camurati-Engelmann disease lead to increased signaling by altering either activation or secretion of the mutant protein. J Biol Chem. 2003 Feb 28;278(9):7718-24. Epub 2002 Dec 18. PMID:12493741 doi:10.1074/jbc.M208857200
  4. McGowan NW, MacPherson H, Janssens K, Van Hul W, Frith JC, Fraser WD, Ralston SH, Helfrich MH. A mutation affecting the latency-associated peptide of TGFbeta1 in Camurati-Engelmann disease enhances osteoclast formation in vitro. J Clin Endocrinol Metab. 2003 Jul;88(7):3321-6. PMID:12843182
  5. Kinoshita A, Fukumaki Y, Shirahama S, Miyahara A, Nishimura G, Haga N, Namba A, Ueda H, Hayashi H, Ikegawa S, Seidel J, Niikawa N, Yoshiura K. TGFB1 mutations in four new families with Camurati-Engelmann disease: confirmation of independently arising LAP-domain-specific mutations. Am J Med Genet A. 2004 May 15;127A(1):104-7. PMID:15103729 doi:10.1002/ajmg.a.20671
  6. Lienart S, Merceron R, Vanderaa C, Lambert F, Colau D, Stockis J, van der Woning B, De Haard H, Saunders M, Coulie PG, Savvides SN, Lucas S. Structural basis of latent TGF-beta1 presentation and activation by GARP on human regulatory T cells. Science. 2018 Oct 25. pii: science.aau2909. doi: 10.1126/science.aau2909. PMID:30361387 doi:http://dx.doi.org/10.1126/science.aau2909

6gff, resolution 3.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA