1a62
CRYSTAL STRUCTURE OF THE RNA-BINDING DOMAIN OF THE TRANSCRIPTIONAL TERMINATOR PROTEIN RHOCRYSTAL STRUCTURE OF THE RNA-BINDING DOMAIN OF THE TRANSCRIPTIONAL TERMINATOR PROTEIN RHO
Structural highlights
FunctionRHO_ECOLI Facilitates transcription termination by a mechanism that involves rho binding to the nascent RNA, activation of rho's RNA-dependent ATPase activity, and release of the mRNA from the DNA template. RNA-dependent NTPAse which utilizes all four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01884] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedTranscription termination factor rho is an ATP-dependent hexameric helicase found in most eubacterial species. The Escherichia coli rho monomer consists of two domains, an RNA-binding domain (residues 1-130) and an ATPase domain (residues 131-419). The ATPase domain is homologous to the beta subunit of F1-ATPase. Here, we report that the crystal structure of the RNA-binding domain of rho (rho130) at 1.55 A confirms that rho130 contains the oligosaccharide/oligonucleotide-binding (OB) fold, a five stranded beta-barrel. The beta-barrel of rho130 is also surprisingly similar to the N-terminal beta-barrel of F1 ATPase, extending the applicability of F1 ATPase as a structural model for hexameric rho. Crystal structure of the RNA-binding domain from transcription termination factor rho.,Allison TJ, Wood TC, Briercheck DM, Rastinejad F, Richardson JP, Rule GS Nat Struct Biol. 1998 May;5(5):352-6. PMID:9586995[1] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences |
|