2c9a
Crystal structure of the MAM-Ig module of receptor protein tyrosine phosphatase muCrystal structure of the MAM-Ig module of receptor protein tyrosine phosphatase mu
Structural highlights
FunctionPTPRM_HUMAN Involved in cell-cell adhesion through homophilic interactions. May play a key role in signal transduction and growth control.[1] Evolutionary Conservation![]() Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedType IIB receptor protein tyrosine phosphatases (RPTPs) are bi-functional cell surface molecules. Their ectodomains mediate stable, homophilic, cell-adhesive interactions, whereas the intracellular catalytic regions can modulate the phosphorylation state of cadherin/catenin complexes. We describe a systematic investigation of the cell-adhesive properties of the extracellular region of RPTPmu, a prototypical type IIB RPTP. The crystal structure of a construct comprising its N-terminal MAM (meprin/A5/mu) and Ig domains was determined at 2.7 A resolution; this assigns the MAM fold to the jelly-roll family and reveals extensive interactions between the two domains, which form a rigid structural unit. Structure-based site-directed mutagenesis, serial domain deletions and cell-adhesion assays allowed us to identify the four N-terminal domains (MAM, Ig, fibronectin type III (FNIII)-1 and FNIII-2) as a minimal functional unit. Biophysical characterization revealed at least two independent types of homophilic interaction which, taken together, suggest that there is the potential for formation of a complex and possibly ordered array of receptor molecules at cell contact sites. Molecular analysis of receptor protein tyrosine phosphatase mu-mediated cell adhesion.,Aricescu AR, Hon WC, Siebold C, Lu W, van der Merwe PA, Jones EY EMBO J. 2006 Feb 22;25(4):701-12. Epub 2006 Feb 2. PMID:16456543[2] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|