2j90

Revision as of 12:12, 6 November 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Crystal structure of human ZIP kinase in complex with a tetracyclic pyridone inhibitor (Pyridone 6)Crystal structure of human ZIP kinase in complex with a tetracyclic pyridone inhibitor (Pyridone 6)

Structural highlights

2j90 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2Å
Ligands:, , , , ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

DAPK3_HUMAN Serine/threonine kinase which is involved in the regulation of apoptosis, autophagy, transcription, translation, actin cytoskeleton reorganization, cell motility, smooth muscle contraction, and mitosis, particularly cytokinesis. Regulates both type I apoptotic and type II autophagic cell deaths signal, depending on the cellular setting. The former is caspase-dependent, while the latter is caspase-independent and is characterized by the accumulation of autophagic vesicles. Regulates myosin phosphorylation in both smooth muscle and non-muscle cells. In smooth muscle, regulates myosin either directly by phosphorylating MYL12B and MYL9 or through inhibition of smooth muscle myosin phosphatase (SMPP1M) via phosphorylation of PPP1R12A, and the inhibition of SMPP1M functions to enhance muscle responsiveness to Ca(2+) and promote a contractile state. Enhances transcription from AR-responsive promoters in a hormone- and kinase-dependent manner. Phosphorylates STAT3 and enhances its transcriptional activity. Positively regulates the canonical Wnt/beta-catenin signaling through interaction with NLK and TCF7L2. Can disrupt the NLK-TCF7L2 complex thereby influencing the phosphorylation of TCF7L2 by NLK. Phosphorylates histone H3 on 'Thr-11' at centromeres during mitosis. Involved in the formation of promyelocytic leukemia protein nuclear body (PML-NB), one of many subnuclear domains in the eukaryotic cell nucleus, and which is involved in oncogenesis and viral infection. Phosphorylates RPL13A on 'Ser-77' upon interferon-gamma activation which is causing RPL13A release from the ribosome, its association with the GAIT complex and its subsequent involvement in transcript-selective translation inhibition.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] Isoform 2 can phosphorylate myosin, PPP1R12A and MYL12B.[13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] [24]

Evolutionary Conservation

 

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Protein kinase autophosphorylation of activation segment residues is a common regulatory mechanism in phosphorylation-dependent signalling cascades. However, the molecular mechanisms that guarantee specific and efficient phosphorylation of these sites have not been elucidated. Here, we report on three novel and diverse protein kinase structures that reveal an exchanged activation segment conformation. This dimeric arrangement results in an active kinase conformation in trans, with activation segment phosphorylation sites in close proximity to the active site of the interacting protomer. Analytical ultracentrifugation and chemical cross-linking confirmed the presence of dimers in solution. Consensus substrate sequences for each kinase showed that the identified activation segment autophosphorylation sites are non-consensus substrate sites. Based on the presented structural and functional data, a model for specific activation segment phosphorylation at non-consensus substrate sites is proposed that is likely to be common to other kinases from diverse subfamilies.

Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites.,Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S EMBO J. 2008 Feb 20;27(4):704-14. Epub 2008 Jan 31. PMID:18239682[25]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Murata-Hori M, Suizu F, Iwasaki T, Kikuchi A, Hosoya H. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett. 1999 May 14;451(1):81-4. PMID:10356987
  2. Takamoto N, Komatsu S, Komaba S, Niiro N, Ikebe M. Novel ZIP kinase isoform lacks leucine zipper. Arch Biochem Biophys. 2006 Dec 15;456(2):194-203. Epub 2006 Oct 16. PMID:17126281 doi:S0003-9861(06)00373-0
  3. Kawai T, Akira S, Reed JC. ZIP kinase triggers apoptosis from nuclear PML oncogenic domains. Mol Cell Biol. 2003 Sep;23(17):6174-86. PMID:12917339
  4. Preuss U, Landsberg G, Scheidtmann KH. Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res. 2003 Feb 1;31(3):878-85. PMID:12560483
  5. Shani G, Marash L, Gozuacik D, Bialik S, Teitelbaum L, Shohat G, Kimchi A. Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol Cell Biol. 2004 Oct;24(19):8611-26. PMID:15367680 doi:10.1128/MCB.24.19.8611-8626.2004
  6. Mukhopadhyay R, Ray PS, Arif A, Brady AK, Kinter M, Fox PL. DAPK-ZIPK-L13a axis constitutes a negative-feedback module regulating inflammatory gene expression. Mol Cell. 2008 Nov 7;32(3):371-82. doi: 10.1016/j.molcel.2008.09.019. PMID:18995835 doi:10.1016/j.molcel.2008.09.019
  7. Sato N, Kawai T, Sugiyama K, Muromoto R, Imoto S, Sekine Y, Ishida M, Akira S, Matsuda T. Physical and functional interactions between STAT3 and ZIP kinase. Int Immunol. 2005 Dec;17(12):1543-52. Epub 2005 Oct 11. PMID:16219639 doi:10.1093/intimm/dxh331
  8. Hagerty L, Weitzel DH, Chambers J, Fortner CN, Brush MH, Loiselle D, Hosoya H, Haystead TA. ROCK1 phosphorylates and activates zipper-interacting protein kinase. J Biol Chem. 2007 Feb 16;282(7):4884-93. Epub 2006 Dec 8. PMID:17158456 doi:10.1074/jbc.M609990200
  9. Ohbayashi N, Okada K, Kawakami S, Togi S, Sato N, Ikeda O, Kamitani S, Muromoto R, Sekine Y, Kawai T, Akira S, Matsuda T. Physical and functional interactions between ZIP kinase and UbcH5. Biochem Biophys Res Commun. 2008 Aug 8;372(4):708-12. doi:, 10.1016/j.bbrc.2008.05.113. Epub 2008 Jun 2. PMID:18515077 doi:10.1016/j.bbrc.2008.05.113
  10. Leister P, Felten A, Chasan AI, Scheidtmann KH. ZIP kinase plays a crucial role in androgen receptor-mediated transcription. Oncogene. 2008 May 22;27(23):3292-300. Epub 2007 Dec 17. PMID:18084323 doi:10.1038/sj.onc.1210995
  11. Togi S, Ikeda O, Kamitani S, Nakasuji M, Sekine Y, Muromoto R, Nanbo A, Oritani K, Kawai T, Akira S, Matsuda T. Zipper-interacting protein kinase (ZIPK) modulates canonical Wnt/beta-catenin signaling through interaction with Nemo-like kinase and T-cell factor 4 (NLK/TCF4). J Biol Chem. 2011 May 27;286(21):19170-7. doi: 10.1074/jbc.M110.189829. Epub 2011, Mar 30. PMID:21454679 doi:10.1074/jbc.M110.189829
  12. Shoval Y, Berissi H, Kimchi A, Pietrokovski S. New modularity of DAP-kinases: alternative splicing of the DRP-1 gene produces a ZIPk-like isoform. PLoS One. 2011 Mar 8;6(2):e17344. doi: 10.1371/journal.pone.0017344. PMID:21408167 doi:10.1371/journal.pone.0017344
  13. Murata-Hori M, Suizu F, Iwasaki T, Kikuchi A, Hosoya H. ZIP kinase identified as a novel myosin regulatory light chain kinase in HeLa cells. FEBS Lett. 1999 May 14;451(1):81-4. PMID:10356987
  14. Takamoto N, Komatsu S, Komaba S, Niiro N, Ikebe M. Novel ZIP kinase isoform lacks leucine zipper. Arch Biochem Biophys. 2006 Dec 15;456(2):194-203. Epub 2006 Oct 16. PMID:17126281 doi:S0003-9861(06)00373-0
  15. Kawai T, Akira S, Reed JC. ZIP kinase triggers apoptosis from nuclear PML oncogenic domains. Mol Cell Biol. 2003 Sep;23(17):6174-86. PMID:12917339
  16. Preuss U, Landsberg G, Scheidtmann KH. Novel mitosis-specific phosphorylation of histone H3 at Thr11 mediated by Dlk/ZIP kinase. Nucleic Acids Res. 2003 Feb 1;31(3):878-85. PMID:12560483
  17. Shani G, Marash L, Gozuacik D, Bialik S, Teitelbaum L, Shohat G, Kimchi A. Death-associated protein kinase phosphorylates ZIP kinase, forming a unique kinase hierarchy to activate its cell death functions. Mol Cell Biol. 2004 Oct;24(19):8611-26. PMID:15367680 doi:10.1128/MCB.24.19.8611-8626.2004
  18. Mukhopadhyay R, Ray PS, Arif A, Brady AK, Kinter M, Fox PL. DAPK-ZIPK-L13a axis constitutes a negative-feedback module regulating inflammatory gene expression. Mol Cell. 2008 Nov 7;32(3):371-82. doi: 10.1016/j.molcel.2008.09.019. PMID:18995835 doi:10.1016/j.molcel.2008.09.019
  19. Sato N, Kawai T, Sugiyama K, Muromoto R, Imoto S, Sekine Y, Ishida M, Akira S, Matsuda T. Physical and functional interactions between STAT3 and ZIP kinase. Int Immunol. 2005 Dec;17(12):1543-52. Epub 2005 Oct 11. PMID:16219639 doi:10.1093/intimm/dxh331
  20. Hagerty L, Weitzel DH, Chambers J, Fortner CN, Brush MH, Loiselle D, Hosoya H, Haystead TA. ROCK1 phosphorylates and activates zipper-interacting protein kinase. J Biol Chem. 2007 Feb 16;282(7):4884-93. Epub 2006 Dec 8. PMID:17158456 doi:10.1074/jbc.M609990200
  21. Ohbayashi N, Okada K, Kawakami S, Togi S, Sato N, Ikeda O, Kamitani S, Muromoto R, Sekine Y, Kawai T, Akira S, Matsuda T. Physical and functional interactions between ZIP kinase and UbcH5. Biochem Biophys Res Commun. 2008 Aug 8;372(4):708-12. doi:, 10.1016/j.bbrc.2008.05.113. Epub 2008 Jun 2. PMID:18515077 doi:10.1016/j.bbrc.2008.05.113
  22. Leister P, Felten A, Chasan AI, Scheidtmann KH. ZIP kinase plays a crucial role in androgen receptor-mediated transcription. Oncogene. 2008 May 22;27(23):3292-300. Epub 2007 Dec 17. PMID:18084323 doi:10.1038/sj.onc.1210995
  23. Togi S, Ikeda O, Kamitani S, Nakasuji M, Sekine Y, Muromoto R, Nanbo A, Oritani K, Kawai T, Akira S, Matsuda T. Zipper-interacting protein kinase (ZIPK) modulates canonical Wnt/beta-catenin signaling through interaction with Nemo-like kinase and T-cell factor 4 (NLK/TCF4). J Biol Chem. 2011 May 27;286(21):19170-7. doi: 10.1074/jbc.M110.189829. Epub 2011, Mar 30. PMID:21454679 doi:10.1074/jbc.M110.189829
  24. Shoval Y, Berissi H, Kimchi A, Pietrokovski S. New modularity of DAP-kinases: alternative splicing of the DRP-1 gene produces a ZIPk-like isoform. PLoS One. 2011 Mar 8;6(2):e17344. doi: 10.1371/journal.pone.0017344. PMID:21408167 doi:10.1371/journal.pone.0017344
  25. Pike AC, Rellos P, Niesen FH, Turnbull A, Oliver AW, Parker SA, Turk BE, Pearl LH, Knapp S. Activation segment dimerization: a mechanism for kinase autophosphorylation of non-consensus sites. EMBO J. 2008 Feb 20;27(4):704-14. Epub 2008 Jan 31. PMID:18239682 doi:10.1038/emboj.2008.8

2j90, resolution 2.00Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA