1r4q

From Proteopedia
Revision as of 07:51, 17 October 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Shiga toxinShiga toxin

Structural highlights

1r4q is a 12 chain structure with sequence from Shigella dysenteriae. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.5Å
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

STXA_SHIDY The A subunit is responsible for inhibiting protein synthesis through the catalytic inactivation of 60S ribosomal subunits. After endocytosis, the A subunit is cleaved by furin in two fragments, A1 and A2: A1 is the catalytically active fragment, and A2 is essential for holotoxin assembly with the B subunits.

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

Several serotypes of Escherichia coli produce protein toxins closely related to Shiga toxin (Stx) from Shigella dysenteriae serotype 1. These Stx-producing E. coli cause outbreaks of hemorrhagic colitis and hemolytic uremic syndrome in humans, with the latter being more likely if the E. coli produce Stx2 than if they only produce Stx1. To investigate the differences among the Stxs, which are all AB(5) toxins, the crystal structure of Stx2 from E. coli O157:H7 was determined at 1.8-A resolution and compared with the known structure of Stx. Our major finding was that, in contrast to Stx, the active site of the A-subunit of Stx2 is accessible in the holotoxin, and a molecule of formic acid and a water molecule mimic the binding of the adenine base of the substrate. Further, the A-subunit adopts a different orientation with respect to the B-subunits in Stx2 than in Stx, due to interactions between the carboxyl termini of the B-subunits and neighboring regions of the A-subunit. Of the three types of receptor-binding sites in the B-pentamer, one has a different conformation in Stx2 than in Stx, and the carboxyl terminus of the A-subunit binds at another. Any of these structural differences might result in different mechanisms of action of the two toxins and the development of hemolytic uremic syndrome upon exposure to Stx2.

Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7.,Fraser ME, Fujinaga M, Cherney MM, Melton-Celsa AR, Twiddy EM, O'Brien AD, James MN J Biol Chem. 2004 Jun 25;279(26):27511-7. Epub 2004 Apr 9. PMID:15075327[1]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Fraser ME, Fujinaga M, Cherney MM, Melton-Celsa AR, Twiddy EM, O'Brien AD, James MN. Structure of shiga toxin type 2 (Stx2) from Escherichia coli O157:H7. J Biol Chem. 2004 Jun 25;279(26):27511-7. Epub 2004 Apr 9. PMID:15075327 doi:10.1074/jbc.M401939200

1r4q, resolution 2.50Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA