2gaq
NMR SOLUTION STRUCTURE OF THE FRB DOMAIN OF mTORNMR SOLUTION STRUCTURE OF THE FRB DOMAIN OF mTOR
Structural highlights
FunctionMTOR_HUMAN Serine/threonine protein kinase which is a central regulator of cellular metabolism, growth and survival in response to hormones, growth factors, nutrients, energy and stress signals. Functions as part of 2 structurally and functionally distinct signaling complexes mTORC1 and mTORC2 (mTOR complex 1 and 2). Activated mTORC1 up-regulates protein synthesis by phosphorylating key regulators of mRNA translation and ribosome synthesis. This includes phosphorylation of EIF4EBP1 and release of its inhibition toward the elongation initiation factor 4E (eiF4E). Moreover, phosphorylates and activates RPS6KB1 and RPS6KB2 that promote protein synthesis by modulating the activity of their downstream targets including ribosomal protein S6, eukaryotic translation initiation factor EIF4B and the inhibitor of translation initiation PDCD4. Regulates ribosome synthesis by activating RNA polymerase III-dependent transcription through phosphorylation and inhibition of MAF1 a RNA polymerase III-repressor. In parallel to protein synthesis, also regulates lipid synthesis through SREBF1/SREBP1 and LPIN1. To maintain energy homeostasis mTORC1 may also regulate mitochondrial biogenesis through regulation of PPARGC1A. mTORC1 also negatively regulates autophagy through phosphorylation of ULK1. Under nutrient sufficiency, phosphorylates ULK1 at 'Ser-758', disrupting the interaction with AMPK and preventing activation of ULK1. Also prevents autophagy through phosphorylation of the autophagy inhibitor DAP. mTORC1 exerts a feedback control on upstream growth factor signaling that includes phosphorylation and activation of GRB10 a INSR-dependent signaling suppressor. Among other potential targets mTORC1 may phosphorylate CLIP1 and regulate microtubules. As part of the mTORC2 complex MTOR may regulate other cellular processes including survival and organization of the cytoskeleton. Plays a critical role in the phosphorylation at 'Ser-473' of AKT1, a pro-survival effector of phosphoinositide 3-kinase, facilitating its activation by PDK1. mTORC2 may regulate the actin cytoskeleton, through phosphorylation of PRKCA, PXN and activation of the Rho-type guanine nucleotide exchange factors RHOA and RAC1A or RAC1B. mTORC2 also regulates the phosphorylation of SGK1 at 'Ser-422'.[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedThe mammalian target of rapamycin (mTOR) is a protein that is intricately involved in signaling pathways controlling cell growth. Rapamycin is a natural product that binds and inhibits mTOR function by interacting with its FKBP-rapamycin-binding (FRB) domain. Here we report on the NMR solution structure of FRB and on further studies aimed at the identification and characterization of novel ligands that target the rapamycin binding pocket. The biological activity of the ligands, and that of rapamycin in the absence of FKBP12, was investigated by assaying the kinase activity of mTOR. While we found that rapamycin binds the FRB domain and inhibits the kinase activity of mTOR even in the absence of FKBP12 (in the low micromolar range), our most potent ligands bind to FRB with similar binding affinity but inhibit the kinase activity of mTOR at much higher concentrations. However, we have also identified one low-affinity compound that is also capable of inhibiting mTOR. Hence, we have identified compounds that can directly mimic rapamycin or can dissociate the FRB binding from the inhibition of the catalytic activity of mTOR. As such, these ligands could be useful in deciphering the complex regulation of mTOR in the cell and in validating the FRB domain as a possible target for the development of novel therapeutic compounds. The FRB domain of mTOR: NMR solution structure and inhibitor design.,Leone M, Crowell KJ, Chen J, Jung D, Chiang GG, Sareth S, Abraham RT, Pellecchia M Biochemistry. 2006 Aug 29;45(34):10294-302. PMID:16922504[17] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|