1m2f

From Proteopedia
Revision as of 11:48, 22 May 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Solution structure of the N-terminal domain of Synechococcus elongatus KaiA (KaiA135N); Family of 25 structuresSolution structure of the N-terminal domain of Synechococcus elongatus KaiA (KaiA135N); Family of 25 structures

Structural highlights

1m2f is a 1 chain structure with sequence from Synechococcus elongatus. Full experimental information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:Solution NMR
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

KAIA_SYNE7 Component of the KaiABC clock protein complex, which constitutes the main circadian regulator in cyanobacteria. The KaiABC complex may act as a promoter-nonspecific transcription regulator that represses transcription, possibly by acting on the state of chromosome compaction. In the complex, it enhances the phosphorylation status of KaiC. In contrast, the presence of KaiB in the complex decreases the phosphorylation status of KaiC, suggesting that KaiB acts by antagonizing the interaction between KaiA and KaiC. A KaiA dimer is sufficient to enhance KaiC hexamer phosphorylation.[1] [2] [3] [4]

Evolutionary Conservation

Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.

Publication Abstract from PubMed

In the cyanobacterium Synechococcus elongatus (PCC 7942) the proteins KaiA, KaiB, and KaiC are required for circadian clock function. We deduced a circadian clock function for KaiA from a combination of biochemical and structural data. Both KaiA and its isolated carboxyl-terminal domain (KaiA180C) stimulated KaiC autophosphorylation and facilitated attenuation of KaiC autophosphorylation by KaiB. An amino-terminal domain (KaiA135N) had no function in the autophosphorylation assay. NMR structure determination showed that KaiA135N is a pseudo-receiver domain. We propose that this pseudo-receiver is a timing input-device that regulates KaiA stimulation of KaiC autophosphorylation, which in turn is essential for circadian timekeeping.

Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism.,Williams SB, Vakonakis I, Golden SS, LiWang AC Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15357-62. Epub 2002 Nov 15. PMID:12438647[5]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Iwasaki H, Nishiwaki T, Kitayama Y, Nakajima M, Kondo T. KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15788-93. Epub 2002 Oct 21. PMID:12391300 doi:http://dx.doi.org/10.1073/pnas.222467299
  2. Xu Y, Mori T, Johnson CH. Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC. EMBO J. 2003 May 1;22(9):2117-26. PMID:12727878 doi:10.1093/emboj/cdg168
  3. Kitayama Y, Iwasaki H, Nishiwaki T, Kondo T. KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system. EMBO J. 2003 May 1;22(9):2127-34. PMID:12727879 doi:10.1093/emboj/cdg212
  4. Ishiura M, Kutsuna S, Aoki S, Iwasaki H, Andersson CR, Tanabe A, Golden SS, Johnson CH, Kondo T. Expression of a gene cluster kaiABC as a circadian feedback process in cyanobacteria. Science. 1998 Sep 4;281(5382):1519-23. PMID:9727980
  5. Williams SB, Vakonakis I, Golden SS, LiWang AC. Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: a potential clock input mechanism. Proc Natl Acad Sci U S A. 2002 Nov 26;99(24):15357-62. Epub 2002 Nov 15. PMID:12438647 doi:10.1073/pnas.232517099
Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA