1e0k
gp4d helicase from phage T7gp4d helicase from phage T7
Structural highlights
FunctionHELIC_BPT7 ATP-dependent DNA helicase and primase essential for viral DNA replication and recombination (PubMed:21606333, PubMed:22977246, PubMed:32009150). The helicase moves 5' -> 3' on the lagging strand template, unwinding the DNA duplex ahead of the leading strand polymerase at the replication fork and generating ssDNA for both leading and lagging strand synthesis (PubMed:21606333, PubMed:22977246, PubMed:32009150). ATP or dTTP hydrolysis propels each helicase domain to translocate 2 nt per step sequentially along DNA (PubMed:30679383, PubMed:17604719). Mediates strand transfer when a joint molecule is available and participates in recombinational DNA repair through its role in strand exchange (PubMed:9096333, PubMed:8617248). Primase activity synthesizes short RNA primers at the sequence 5'-GTC-3' on the lagging strand that the polymerase elongates using dNTPs and providing the primase is still present (PubMed:6454135, PubMed:9139692).[HAMAP-Rule:MF_04154][1] [2] [3] [4] [5] [6] [7] [8] [9] Evolutionary ConservationCheck, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf. Publication Abstract from PubMedWe have determined the crystal structure of an active, hexameric fragment of the gene 4 helicase from bacteriophage T7. The structure reveals how subunit contacts stabilize the hexamer. Deviation from expected six-fold symmetry of the hexamer indicates that the structure is of an intermediate on the catalytic pathway. The structural consequences of the asymmetry suggest a "binding change" mechanism to explain how cooperative binding and hydrolysis of nucleotides are coupled to conformational changes in the ring that most likely accompany duplex unwinding. The structure of a complex with a nonhydrolyzable ATP analog provides additional evidence for this hypothesis, with only four of the six possible nucleotide binding sites being occupied in this conformation of the hexamer. This model suggests a mechanism for DNA translocation. Crystal structure of T7 gene 4 ring helicase indicates a mechanism for sequential hydrolysis of nucleotides.,Singleton MR, Sawaya MR, Ellenberger T, Wigley DB Cell. 2000 Jun 9;101(6):589-600. PMID:10892646[10] From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine. See AlsoReferences
|
|