1rh4
RH4 DESIGNED RIGHT-HANDED COILED COIL TETRAMER
OverviewOverview
Recent advances in computational techniques have allowed the design of precise side-chain packing in proteins with predetermined, naturally occurring backbone structures. Because these methods do not model protein main-chain flexibility, they lack the breadth to explore novel backbone conformations. Here the de novo design of a family of alpha-helical bundle proteins with a right-handed superhelical twist is described. In the design, the overall protein fold was specified by hydrophobic-polar residue patterning, whereas the bundle oligomerization state, detailed main-chain conformation, and interior side-chain rotamers were engineered by computational enumerations of packing in alternate backbone structures. Main-chain flexibility was incorporated through an algebraic parameterization of the backbone. The designed peptides form alpha-helical dimers, trimers, and tetramers in accord with the design goals. The crystal structure of the tetramer matches the designed structure in atomic detail.
About this StructureAbout this Structure
The following page contains interesting information on the relation of 1RH4 with [Designer Proteins]. Full crystallographic information is available from OCA.
ReferenceReference
High-resolution protein design with backbone freedom., Harbury PB, Plecs JJ, Tidor B, Alber T, Kim PS, Science. 1998 Nov 20;282(5393):1462-7. PMID:9822371 Page seeded by OCA on Sat May 3 07:29:31 2008