Structure of the Regulator of G-Protein Signaling Domain of RGS2Structure of the Regulator of G-Protein Signaling Domain of RGS2
Structural highlights
2af0 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
RGS2_HUMAN Inhibits signal transduction by increasing the GTPase activity of G protein alpha subunits thereby driving them into their inactive GDP-bound form. May play a role in leukemogenesis. Plays a role in negative feedback control pathway for adenylyl cyclase signaling. Binds EIF2B5 and blocks its activity, thereby inhibiting the translation of mRNA into protein.[1][2][3][4]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
↑Heximer SP, Lim H, Bernard JL, Blumer KJ. Mechanisms governing subcellular localization and function of human RGS2. J Biol Chem. 2001 Apr 27;276(17):14195-203. Epub 2001 Jan 30. PMID:11278586 doi:10.1074/jbc.M009942200
↑Gu S, Anton A, Salim S, Blumer KJ, Dessauer CW, Heximer SP. Alternative translation initiation of human regulators of G-protein signaling-2 yields a set of functionally distinct proteins. Mol Pharmacol. 2008 Jan;73(1):1-11. Epub 2007 Sep 27. PMID:17901199 doi:10.1124/mol.107.036285
↑Wu HK, Heng HH, Shi XM, Forsdyke DR, Tsui LC, Mak TW, Minden MD, Siderovski DP. Differential expression of a basic helix-loop-helix phosphoprotein gene, G0S8, in acute leukemia and localization to human chromosome 1q31. Leukemia. 1995 Aug;9(8):1291-8. PMID:7643615
↑Nguyen CH, Ming H, Zhao P, Hugendubler L, Gros R, Kimball SR, Chidiac P. Translational control by RGS2. J Cell Biol. 2009 Sep 7;186(5):755-65. PMID:19736320 doi:jcb.200811058