Structural characterization of 5-Aryl-4-(5-substituted-2-4- dihydroxyphenyl)-1,2,3-thiadiazole Hsp90 inhibitors.Structural characterization of 5-Aryl-4-(5-substituted-2-4- dihydroxyphenyl)-1,2,3-thiadiazole Hsp90 inhibitors.

Structural highlights

2yi6 is a 1 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

HS90A_HUMAN Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.[1] [2]

Publication Abstract from PubMed

A potential therapeutic strategy for targeting cancer that has gained much interest is the inhibition of the ATP binding and ATPase activity of the molecular chaperone Hsp90. We have determined the structure of the human Hsp90alpha N-terminal domain in complex with a series of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazoles. The structures provide the molecular details for the activity of these inhibitors. One of these inhibitors, ICPD 34, causes a structural change that affects a mobile loop, which adopts a conformation similar to that seen in complexes with ADP, rather than the conformation generally seen with the pyrazole/isoxazole-resorcinol class of inhibitors. Competitive binding to the Hsp90 N-terminal domain was observed in a biochemical assay, and these compounds showed antiproliferative activity and induced apoptosis in the HCT116 human colon cancer cell line. These inhibitors also caused induction of the heat shock response with the upregulation of Hsp72 and Hsp27 protein expression and the depletion of Hsp90 clients, CRAF, ERBB2 and CDK4, thus confirming that antiproliferative activity was through the inhibition of Hsp90. The presence of increased levels of the cleavage product of PARP indicated apoptosis in response to Hsp90 inhibitors. This work provides a framework for the further optimization of thiadiazole inhibitors of Hsp90. Importantly, we demonstrate that the thiadiazole inhibitors display a more limited core set of interactions relative to the clinical trial candidate NVP-AUY922, and consequently may be less susceptible to resistance derived through mutations in Hsp90.

Co-crystalization and in vitro biological characterization of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazole hsp90 inhibitors.,Sharp SY, Roe SM, Kazlauskas E, Cikotiene I, Workman P, Matulis D, Prodromou C PLoS One. 2012;7(9):e44642. Epub 2012 Sep 11. PMID:22984537[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, Lamas S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8525-30. Epub 2005 Jun 3. PMID:15937123 doi:10.1073/pnas.0407294102
  2. Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem. 2001 May 11;276(19):15571-4. Epub 2001 Mar 23. PMID:11274138 doi:10.1074/jbc.C100055200
  3. Sharp SY, Roe SM, Kazlauskas E, Cikotiene I, Workman P, Matulis D, Prodromou C. Co-crystalization and in vitro biological characterization of 5-aryl-4-(5-substituted-2-4-dihydroxyphenyl)-1,2,3-thiadiazole hsp90 inhibitors. PLoS One. 2012;7(9):e44642. Epub 2012 Sep 11. PMID:22984537 doi:http://dx.doi.org/10.1371/journal.pone.0044642

2yi6, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA