6ro1

Revision as of 15:24, 24 January 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

X-ray crystal structure of the MTR4 NVL complexX-ray crystal structure of the MTR4 NVL complex

Structural highlights

6ro1 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 3.07Å
Ligands:, ,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

MTREX_HUMAN Component of exosome targeting complexes. Subunit of the trimeric nuclear exosome targeting (NEXT) complex, a complex that directs a subset of non-coding short-lived RNAs for exosomal degradation. Subunit of the trimeric poly(A) tail exosome targeting (PAXT) complex, a complex that directs a subset of long and polyadenylated poly(A) RNAs for exosomal degradation. The RNA exosome is fundamental for the degradation of RNA in eukaryotic nuclei. Substrate targeting is facilitated by its cofactor MTREX, which links to RNA-binding protein adapters (PubMed:27871484). May be involved in pre-mRNA splicing. Associated with the RNA exosome complex and involved in the 3'-processing of the 7S pre-RNA to the mature 5.8S rRNA.[1] [2]

Publication Abstract from PubMed

The nuclear exosome and its essential co-factor, the RNA helicase MTR4, play crucial roles in several RNA degradation pathways. Besides unwinding RNA substrates for exosome-mediated degradation, MTR4 associates with RNA-binding proteins that function as adaptors in different RNA processing and decay pathways. Here, we identify and characterize the interactions of human MTR4 with a ribosome processing adaptor, NVL, and with ZCCHC8, an adaptor involved in the decay of small nuclear RNAs. We show that the unstructured regions of NVL and ZCCHC8 contain short linear motifs that bind the MTR4 arch domain in a mutually exclusive manner. These short sequences diverged from the arch-interacting motif (AIM) of yeast rRNA processing factors. Our results suggest that nuclear exosome adaptors have evolved canonical and non-canonical AIM sequences to target human MTR4 and demonstrate the versatility and specificity with which the MTR4 arch domain can recruit a repertoire of different RNA-binding proteins.

The MTR4 helicase recruits nuclear adaptors of the human RNA exosome using distinct arch-interacting motifs.,Lingaraju M, Johnsen D, Schlundt A, Langer LM, Basquin J, Sattler M, Heick Jensen T, Falk S, Conti E Nat Commun. 2019 Jul 29;10(1):3393. doi: 10.1038/s41467-019-11339-x. PMID:31358741[3]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Schilders G, van Dijk E, Pruijn GJ. C1D and hMtr4p associate with the human exosome subunit PM/Scl-100 and are involved in pre-rRNA processing. Nucleic Acids Res. 2007;35(8):2564-72. Epub 2007 Apr 4. PMID:17412707 doi:http://dx.doi.org/10.1093/nar/gkm082
  2. Meola N, Domanski M, Karadoulama E, Chen Y, Gentil C, Pultz D, Vitting-Seerup K, Lykke-Andersen S, Andersen JS, Sandelin A, Jensen TH. Identification of a Nuclear Exosome Decay Pathway for Processed Transcripts. Mol Cell. 2016 Nov 3;64(3):520-533. doi: 10.1016/j.molcel.2016.09.025. Epub 2016 , Oct 27. PMID:27871484 doi:http://dx.doi.org/10.1016/j.molcel.2016.09.025
  3. Lingaraju M, Johnsen D, Schlundt A, Langer LM, Basquin J, Sattler M, Heick Jensen T, Falk S, Conti E. The MTR4 helicase recruits nuclear adaptors of the human RNA exosome using distinct arch-interacting motifs. Nat Commun. 2019 Jul 29;10(1):3393. doi: 10.1038/s41467-019-11339-x. PMID:31358741 doi:http://dx.doi.org/10.1038/s41467-019-11339-x

6ro1, resolution 3.07Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA