6qxg

From Proteopedia
Revision as of 15:10, 24 January 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigation Jump to search

Crystal structure of His-tag human thymidylate synthase (HT-hTS) in complex with FdUMPCrystal structure of His-tag human thymidylate synthase (HT-hTS) in complex with FdUMP

Structural highlights

6qxg is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 2.08Å
Ligands:,
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Function

TYSY_HUMAN Contributes to the de novo mitochondrial thymidylate biosynthesis pathway.[1]

Publication Abstract from PubMed

Thymidylate synthase (TS) is an enzyme of paramount importance as it provides the only de novo source of deoxy-thymidine monophosphate (dTMP). dTMP, essential for DNA synthesis, is produced by the TS-catalyzed reductive methylation of 2'-deoxyuridine-5'-monophosphate (dUMP) using N(5),N(10)-methylenetetrahydrofolate (mTHF) as a cofactor. TS is ubiquitous and a validated drug target. TS enzymes from different organisms differ in sequence and structure, but are all obligate homodimers. The structural and mechanistic differences between the human and bacterial enzymes are exploitable to obtain selective inhibitors of bacterial TSs that can enrich the currently available therapeutic tools against bacterial infections. Enterococcus faecalis is a pathogen fully dependent on TS for dTMP synthesis. In this study, we present four new crystal structures of Enterococcus faecalis and human TSs in complex with either the substrate dUMP or the inhibitor FdUMP. The results provide new clues about the half-site reactivity of Enterococcus faecalis TS and the mechanisms underlying the conformational changes occurring in the two enzymes. We also identify relevant differences in cofactor and inhibitor binding between Enterococcus faecalis and human TS that can guide the design of selective inhibitors against bacterial TSs.

Structural Comparison of Enterococcus faecalis and Human Thymidylate Synthase Complexes with the Substrate dUMP and Its Analogue FdUMP Provides Hints about Enzyme Conformational Variabilities.,Pozzi C, Ferrari S, Luciani R, Tassone G, Costi MP, Mangani S Molecules. 2019 Mar 31;24(7). pii: molecules24071257. doi:, 10.3390/molecules24071257. PMID:30935102[2]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

See Also

References

  1. Anderson DD, Quintero CM, Stover PJ. Identification of a de novo thymidylate biosynthesis pathway in mammalian mitochondria. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15163-8. doi:, 10.1073/pnas.1103623108. Epub 2011 Aug 26. PMID:21876188 doi:10.1073/pnas.1103623108
  2. Pozzi C, Ferrari S, Luciani R, Tassone G, Costi MP, Mangani S. Structural Comparison of Enterococcus faecalis and Human Thymidylate Synthase Complexes with the Substrate dUMP and Its Analogue FdUMP Provides Hints about Enzyme Conformational Variabilities. Molecules. 2019 Mar 31;24(7). pii: molecules24071257. doi:, 10.3390/molecules24071257. PMID:30935102 doi:http://dx.doi.org/10.3390/molecules24071257

6qxg, resolution 2.08Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA