6hx7

Revision as of 14:41, 24 January 2024 by OCA (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Crystal structure of human R180T variant of ORNITHINE AMINOTRANSFERASE at 1.8 AngstromCrystal structure of human R180T variant of ORNITHINE AMINOTRANSFERASE at 1.8 Angstrom

Structural highlights

6hx7 is a 3 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
Method:X-ray diffraction, Resolution 1.8Å
Ligands:
Resources:FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT

Disease

OAT_HUMAN Defects in OAT are the cause of hyperornithinemia with gyrate atrophy of choroid and retina (HOGA) [MIM:258870. HOGA is a slowly progressive blinding autosomal recessive disorder.[1] [2] [3] [4] [5] [6]

Function

OAT_HUMAN

Publication Abstract from PubMed

Among the over 50 gyrate atrophy-causing mutations of ornithine delta-aminotransferase (OAT), the R180T involves an active site residue located at the dimer interface, which in the crystal structure of OAT complexed with 5-fluoromethylornithine engages a salt bridge with the alpha-carboxylate of the substrate analogue. Starting from the previous finding that no transaminase activity was detected in CHO-K1 cells expressing the R180T variant, here we try to shed light at the protein level on the structural and/or functional defects of the R180T variant. To this aim, the variant has been cloned, expressed, purified and characterized by a combination of biochemical and structural studies. Although the R180T variant shares a similar overall conformation with the wild-type, its crystal structure solved at 1.8 A reveals slight structural alterations at the active site and at the dimeric interface. These changes are consistent with the spectroscopic and kinetic results, indicating that the variant, as compared with the wild-type OAT, shows (a) an increased Km value for l-ornithine (l-Orn), (b) an altered pyridoxal 5'-phosphate binding mode and affinity and (c) an increased thermostability. In addition, the R180T mutant exhibits a remarkable loss of catalytic activity and is endowed with the ability to catalyse not only the delta-transamination but also, albeit to a lesser extent, the alpha-transamination of l-Orn. Overall, these data indicate that the slight structural changes caused by the R180T mutation, preventing a proper collocation of l-Orn at the active site of OAT, are responsible for the notable reduction of the catalytic efficiency. ENZYMES: Ornithine aminotransferase EC 2.6.1.13. DATABASES: 6HX7.pdb.

R180T variant of delta-ornithine aminotransferase associated with gyrate atrophy: biochemical, computational, X-ray and NMR studies provide insight into its catalytic features.,Montioli R, Paiardini A, Giardina G, Zanzoni S, Cutruzzola F, Cellini B, Borri Voltattorni C FEBS J. 2019 Apr 8. doi: 10.1111/febs.14843. PMID:30957963[7]

From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.

References

  1. Ramesh V, McClatchey AI, Ramesh N, Benoit LA, Berson EL, Shih VE, Gusella JF. Molecular basis of ornithine aminotransferase deficiency in B-6-responsive and -nonresponsive forms of gyrate atrophy. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3777-80. PMID:3375240
  2. Inana G, Chambers C, Hotta Y, Inouye L, Filpula D, Pulford S, Shiono T. Point mutation affecting processing of the ornithine aminotransferase precursor protein in gyrate atrophy. J Biol Chem. 1989 Oct 15;264(29):17432-6. PMID:2793865
  3. Michaud J, Brody LC, Steel G, Fontaine G, Martin LS, Valle D, Mitchell G. Strand-separating conformational polymorphism analysis: efficacy of detection of point mutations in the human ornithine delta-aminotransferase gene. Genomics. 1992 Jun;13(2):389-94. PMID:1612597
  4. Brody LC, Mitchell GA, Obie C, Michaud J, Steel G, Fontaine G, Robert MF, Sipila I, Kaiser-Kupfer M, Valle D. Ornithine delta-aminotransferase mutations in gyrate atrophy. Allelic heterogeneity and functional consequences. J Biol Chem. 1992 Feb 15;267(5):3302-7. PMID:1737786
  5. Michaud J, Thompson GN, Brody LC, Steel G, Obie C, Fontaine G, Schappert K, Keith CG, Valle D, Mitchell GA. Pyridoxine-responsive gyrate atrophy of the choroid and retina: clinical and biochemical correlates of the mutation A226V. Am J Hum Genet. 1995 Mar;56(3):616-22. PMID:7887415
  6. Kobayashi T, Ogawa H, Kasahara M, Shiozawa Z, Matsuzawa T. A single amino acid substitution within the mature sequence of ornithine aminotransferase obstructs mitochondrial entry of the precursor. Am J Hum Genet. 1995 Aug;57(2):284-91. PMID:7668253
  7. Montioli R, Paiardini A, Giardina G, Zanzoni S, Cutruzzola F, Cellini B, Borri Voltattorni C. R180T variant of delta-ornithine aminotransferase associated with gyrate atrophy: biochemical, computational, X-ray and NMR studies provide insight into its catalytic features. FEBS J. 2019 Apr 8. doi: 10.1111/febs.14843. PMID:30957963 doi:http://dx.doi.org/10.1111/febs.14843

6hx7, resolution 1.80Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)Proteopedia Page Contributors and Editors (what is this?)

OCA